Atomistix ToolKit
From Wikipedia, the free encyclopedia
Atomistix ToolKit (ATK) is a first principles electronic structure program capable of modelling electrical properties of nanostructured systems coupled to semi-infinite electrodes. The key features in ATK are:
- Calculation of electrical properties of nanoscale devices
- Access to advanced DFT algorithms
- Supports molecular systems, bulk and periodic systems, and two probe systems
- Python based NanoLanguage scripting environment
- User-friendly graphical user interface (Atomistix Virtual NanoLab)
In two-probe systems, the two electrodes, for instance, could be a nanotube and a metal, and the nanostructure could be the interface region between the two systems. Other typical systems include molecules between metal surfaces and interfaces between materials.
ATK is based on Non-Equilibrium Green's Function (NEGF) techniques, and is capable of treating situations in which the two electrodes have different electrochemical potentials, i.e. in which an external [[voltage bias]|voltage-] or spin bias is applied across the nanostructure. It can calculate the electrical (and/or spin) current, voltage drop across the junction, electron transmission waves, etc.. ATK is also capable of performing conventional electronic structure simulations on isolated and periodic systems, such as molecules, nanotubes and crystals.
Contents |
[edit] Features
- First principles DFT geometry optimization
- Non-Equilibrium Green Function evaluation of electrical and spintronic properties
- Electron transport through two-probe systems
[edit] References
ATK is primarily based on the research published in:
- Brandbyge, Mozos, Ordejón, Taylor, and Stokbro. Density-functional method for non-equilibrium electron transport. Physical Review B, Vol 65, 165401 (2002)
- Soler, Artacho, Gale, García, Junquera, Ordejón, and Porta. The SIESTA method for ab initio order-N materials simulation. J. Phys.:Condensed Matter 14, 2745-2778 (2002)
The following is a small selection of recent articles that have used ATK in the research:
- Z. X. Dai, X. Q. Shi, X. H. Zheng, and Z. Zeng, Effect of gating on the transport properties of a Si-4 cluster, Phys. Rev. B 73, 045411 (2006).
- K. H. Muller, Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules, Phys. Rev. B 73, 045403 (2006).
- M. Paulsson, T. Frederiksen, M. Brandbyge, Inelastic transport through molecules: Comparing first-principles calculations to experiments, Nano Lett. 6, 258 (2006).
- Y. H. Qi, D. R. Guan, and C. B. Liu, DFT study of the transport properties of molecular wire at low bias, Chin. J. Chem. 24, 326 (2006).
- X. Yin, Y. W. Li, Y. Zhang, P. Li, and J. W. Zhao, Theoretical analysis of geometry-correlated conductivity of molecular wire, Chem. Phys. Lett. 422, 111 (2006).
- P. Bai, E. P. Li, C. C. Chong, and Z. K. Chen, Effects of metal-molecule interface conformations on the electron transport of single molecule, Curr. Appl. Phys. 6, 531 (2006).
- D.Cheng, W.Y. Kim, S.K. Min, T. Nautiyal and K.S. Kim, Magic structures and quantum conductance [110] silver nanowires, Phys. Rev. Lett. 96, 096104 (2006).
- Q.M. Yan, G. Zhou. S.G. Hao, J. Wu and W.H. Duan, Mechanism of nanoelectronic switch based on telescoping carbon nanotubes, Appl. Phys. Lett. 88, 173107 (2006).
- Z.Y. Li, D.S. Kosov, Dithiocarbamate anchoring in molecular wire junctions: A first principles study, J. Phys. Chem. 20, 9893 (2006).
- K. Odbadrakh, P. Pomorski, and C. Roland, Ab initio band bending, metal-induced gap states, and Schottky barriers of a carbon and a boron nitride nanotube device, Phys. Rev. B 73, 233402 (2006).
- D.Q. Andrews, R. Cohen, R.P. Van Duyne and M.A. Ratner, Single Molecule electron transport junctions: Charging and geometric effects on conductance, J. Chem. Phys. 125, 174718 (2006).
- Y.H. Qi, D. Guan, Y.S. Jiang, C.B. Liu and D.J. Zhang, Theoretical study of the electronic transport property of the hydrogen-Pt contact system, Appl. Phys. Lett. 89, 182119 (2006).
- X.Q. Shi, Z.X. Dai, X. H. Zheng and Z. Zeng, Ab initio electron transport study of carbon and boron-nitrogen nanowires, J. Phys. Chem. B 110, 16902 (2006).
- A. Grigoriev, J. Sköldberg, G. Wendin and Z. Crljen, Critical roles of metal-molecule contacts in electron transport through molecular-wire junctions, Phys. Rev. B 74, 045401 (2006).
- K.H. Müller, Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules, Phys. Rev. B 73, 045403 (2006).
- A. Grigoriev, N.V. Skorodumova, S. I. Simak, G. Wendin, B. Johansson, and R. Ahuja, Electron Transport in Stretched Monoatomic Gold Wires, Phys. Rev. Lett. 97, 236807 (2006).
- V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and I. Mertig, Organometallic Benzene-Vanadium Wire: A One-Dimensional Half-Metallic Ferromagnet, Phys. Rev. Lett. 97, 097201 (2006).
- X.H. Zheng, X.Q. Shi, Z.X. Dai, and Z. Zeng, Transport properties of the Au32 cluster with fullerene symmetry, Phys. Rev. B 74, 085418 (2006).
- Z.Y. Li, Electron transport through dipyrimidinyl-diphenyl diblock molecular wire: protonation effect, cond-mat/0611650
- Y.H. Zhou, X.H. Zheng, Y. Xu, Z.Y. Zeng, Current rectification by asymmetric molecules: An ab initio study, cond-mat/0611508
- Qi, YH; Guan, DR; Jiang, YS; Zheng, YJ; Liu, CB, How do oxygen molecules move into silver contacts and change their electronic transport properties?, Phys. Rev. Lett. 97, 256101 (2006)