ARIA (cipher)

From Wikipedia, the free encyclopedia


ARIA
First published: 2003
Derived from: AES
Certification: Korean standard
Key size(s): 128, 192, or 256 bits
Block size(s): 128 bits
Structure: Substitution-permutation network
Rounds: 12, 14, or 16
Best public cryptanalysis:
Linear cryptanalysis can break 7 rounds using 277 known plaintexts

In cryptography, ARIA is a block cipher designed in 2003 by a large group of Korean researchers. In 2004, the Korean Agency for Technology and Standards selected it as a standard cryptographic technique.

The algorithm uses a substitution-permutation network structure based on AES. The interface is the same as AES: 128-bit block size with key size of 128, 192, or 256 bits. The number of rounds is 12, 14, or 16, depending on the key size. ARIA uses 2 8×8-bit S-boxes and their inverses in alternate rounds; one of these is the Rijndael S-box.

The key schedule processes the key using a 3-round 256-bit Feistel cipher, with the binary expansion of 1/π as a source of "nothing up my sleeve numbers".

[edit] References

[edit] External links

Block ciphers
v  d  e
Algorithms: 3-Way | AES | Akelarre | Anubis | ARIA | BaseKing | Blowfish | C2 | Camellia | CAST-128 | CAST-256 | CIKS-1 | CIPHERUNICORN-A | CIPHERUNICORN-E | CMEA | Cobra | COCONUT98 | Crab | CRYPTON | CS-Cipher | DEAL | DES | DES-X | DFC | E2 | FEAL | FROG | G-DES | GOST | Grand Cru | Hasty Pudding Cipher | Hierocrypt | ICE | IDEA | IDEA NXT | Iraqi | Intel Cascade Cipher | KASUMI | KHAZAD | Khufu and Khafre | KN-Cipher | Libelle | LOKI89/91 | LOKI97 | Lucifer | M6 | MacGuffin | Madryga | MAGENTA | MARS | Mercy | MESH | MISTY1 | MMB | MULTI2 | NewDES | NOEKEON | NUSH | Q | RC2 | RC5 | RC6 | REDOC | Red Pike | S-1 | SAFER | SC2000 | SEED | Serpent | SHACAL | SHARK | Skipjack | SMS4 | Square | TEA | Triple DES | Twofish | UES | Xenon | xmx | XTEA | Zodiac
Design: Feistel network | Key schedule | Product cipher | S-box | SPN

Attacks: Brute force | Linear / Differential / Integral cryptanalysis | Mod n | Related-key | Slide | XSL

Standardization: AES process | CRYPTREC | NESSIE

Misc: Avalanche effect | Block size | IV | Key size | Modes of operation | Piling-up lemma | Weak key

Cryptography
v  d  e
History of cryptography | Cryptanalysis | Cryptography portal | Topics in cryptography
Symmetric-key algorithm | Block cipher | Stream cipher | Public-key cryptography | Cryptographic hash function | Message authentication code | Random numbers