Archimedes number

From Wikipedia, the free encyclopedia

An Archimedes number (not to be confused with Archimedes constant, π), named after the ancient Greek scientist Archimedes, to determine the motion of fluids due to density differences, is a dimensionless number in the form:

{\rm Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2}

where:

  • g = gravitational acceleration (9.81 m/s²),
  • ρl = density of the fluid, kg / m3
  • ρ = density of the body, kg / m3
  • μ = dynamic viscosity, kg / sm
  • L = characteristic length of body, m

[edit] See also


 v  d  e Dimensionless numbers in fluid dynamics
ArchimedesBagnoldBondBrinkmanCapillaryDamköhlerDeborahEckertEkmanEulerFroudeGalileiGrashofHagenKnudsenLaplaceLewisMachMarangoniNusseltOhnesorgePécletPrandtlRayleighReynoldsRichardsonRossbySchmidtSherwoodStantonStokesStrouhalWeberWeissenbergWomersley
Image:Mathapplied-stub_ico.png This applied mathematics-related article is a stub. You can help Wikipedia by expanding it.