Aqueous homogeneous reactor
From Wikipedia, the free encyclopedia
Aqueous homogeneous reactors (AHR) are a type of nuclear reactor in which soluble nuclear salts (usually uranium sulfate or uranium nitrate) have been dissolved in water. The fuel is mixed with the coolant and the moderator, thus the name "homogeneous" ('of the same physical state') The water can be either heavy water or light water, both which need to be very pure. A heavy water aqueous homogeneous reactor can achieve criticality (turn on) with natural uranium dissolved as uranium sulfate.[citation needed] Thus, no enriched uranium is needed for this reactor. The heavy water versions have the lowest specific fuel requirements (least amount of nuclear fuel is required to start them). Even in light water versions less than 1 pound (454 grams) of plutonium-239 or uranium-233 is needed for operation. Neutron economy in the heavy water versions is the highest of all reactor designs.[citation needed]
Their self-controlling features and ability to handle very large increases in reactivity make them unique among reactors, and possibly safest. At Santa Susana, California, where a series of tests titled: The Kinetic Energy Experiments were performed in the late 1940's, control rods were loaded on springs and then flung out of the reactor in milliseconds. Energy output shot up from ~100 watts to over ~1,000,000 watts with no problems observed.
Aqueous homogeneous reactors were sometimes called water boilers, although they are not boiling water reactors. They seem to be boiling their water, but in fact this bubbling is from the production of hydrogen and oxygen as the radiation, and especially the fission particles, dissociate the water into its constituent gases. They were widely used as research reactors as they were self-controlling, have very high neutron fluxes and were easy to manage. As of April 2006, only five Aqueous Homogeneous Reactors were operating according to the IAEA Research Reactor database.
Should methods and/or materials be developed to solve their difficult corrosion problems, they would be excellent breeders of uranium-233 fuels from thorium, and also be incapable of net, or bomb grade, plutonium production. The ability to extract medical isotopes directly from in-line fuel has sparked renewed interest in aqueous homogeneous reactors[1].
Contents |
[edit] History
Initial studies of homogeneous reactors took place toward the close of World War II. It pained chemists to see precisely fabricated solid-fuel elements of heterogeneous reactors eventually dissolved in acids to remove fission products—the "ashes" of a nuclear reaction. Chemical engineers hoped to design liquid-fuel reactors that would dispense with the costly destruction and processing of solid fuel elements. The formation of gas bubbles in liquid fuels and the corrosive attack on materials, however, presented daunting design and materials challenges.
Enrico Fermi advocated construction at Los Alamos of what was to become the world’s third reactor, the first homogeneous liquid-fuel reactor, and the first reactor to be fueled by uranium enriched in uranium-235. Eventually three versions were built, all based on the same concept. For security purposes these reactors were given the code name "water boilers". The name was appropriate because in the higher power versions the fuel solution appeared to boil as hydrogen and oxygen bubbles were formed through decomposition of the water solvent by the energetic fission products.
The reactor was called LOPO (for low power) because its power output was virtually zero. LOPO served the purposes for which it had been intended: determination of the critical mass of a simple fuel configuration and testing of a new reactor concept. LOPO achieved criticality, in May 1944 after one final addition of enriched uranium. Enrico Fermi himself was at the controls. LOPO was dismantled to make way for a second Water Boiler that could be operated at power levels up to 5.5 kilowatts. Named HYPO (for high power), this version used solution of uranyl nitrate as fuel where as the earlier device had used enriched uranyl sulfate. This reactor became operative in December 1944. Many of the key neutron measurements needed in the design of the early atomic bombs were made with HYPO. By 1950 higher neutron fluxes were desirable, consequently, extensive modifications were made to HYPO to permit operation at power levels up to 35 kilowatts this reactor was, of course, named SUPO. SUPO was operated almost daily until its deactivation in 1974.
In 1952, two sets of critical experiments with heavy water solutions of enriched uranium as uranyl fluoride were carried out at Los Alamos to support an idea of Edward Teller about weapon design. By the time the experiments were completed, Teller had lost interest, however the results were then applied to improve the earlier reactors. In one set of experiments the solution was in 25 and 30 inch diameter tanks without a surrounding reflector. Solution heights were adjusted to criticality with D2O solutions at D/235U atomic ratios of 1:230 and 1:419 in the smaller tank and 1:856 to 1:2081 in the larger tank. In the other set of experiments solution spheres were centered in a 35-inch-diameter spherical container into which D2O was pumped from a reservoir at the base. Criticality was attained in six solution spheres from 13.5- to 18.5-inch diameter at D/235U atomic ratios from 1:34 to 1:431. On completion of the experiment that equipment too was retired.
The first aqueous homogeneous reactor built at Oak Ridge National Laboratory went critical October 1952. The design power level of one megawatt (MW) was attained in February 1953. The reactor's high-pressure steam twirled a small turbine that generated 150 kilowatts (kW) of electricity, an accomplishment that earned its operators the honorary title "Oak Ridge Power Company." However AEC was committed to development of solid-fuel reactors cooled with water and laboratory demonstrations of other reactor types, regardless of their success, did not alter its course.
[edit] The ARGUS reactor
Environmentally friendly and economically competitive techniques of radioactive isotope production are being developed at the Kurchatov Institute in Russia, on the base of the ARGUS reactor - an aqueous homogeneous minireactor. This reactor, with 20 kW thermal output power, has been in operation since 1981 and has shown high indices of efficiency and safety. A feasibility study to develop techniques for strontium-89 and molybdenum-99 production, in this reactor are currenty underway. An analysis of the isotopes produced, performed at the National Institute of Radioactive Elements in Belgium has shown that the Mo-99 samples produced at ARGUS are characterized by an extreme radiochemical purity, i.e. the impurity content in them is lower than the allowable limits by 2-4 orders of magnitude. Among the radioactive medicial isotopes, Mo-99 and Sr-89 are wide spread. The first one is a raw material for production of technetium-99m, a radiopharmaceutical preparation for an early diagnostics of a number of diseases- oncological, cardiological and, urological ones among others. More than 6 million people are examined with this isotope each year in Europe.
[edit] Other research
The use of an aqueous homogeneous nuclear fission reactor for the simultaneous hydrogen production by water radiolysis and process heat production was examined at the University of Michigan, in Ann Arbor in 1975. Several small research projects continue this line of inqury in Europe.
[edit] See also
[edit] External links
- "Fluid Fuel Reactors", 1958
- Homogeneous Reactor Experiments
- Present Status of the Use of LEU in Acqueous Reactors to Produce Mo-99
- Solution Reactor for Laboratory Nuclear Physics Analyses and Inspection Methods
- A History of Critical Experiments at the Pajarito Site
- On an opportunity to produce Мо-99 and Sr-89
- ORNL Review, chap 4
- SUPO Aqueous Homogeneous Reactor