User:Alimond

From Wikipedia, the free encyclopedia

Min\ TBAL=\frac{Incremental\ Cost}{Days\ Saved \times \left[k-ECR\times\left(1-rr\right)\right]/ 365}
Min\ TBAL=\frac{\$15-\$0.30}{1 \times \left[9\%-0\%\times\left(1-12\%\right)\right]/ 365}=\$59,617
Min\ TBAL=\frac{\$15-\$0.30}{1 \times \left[9\%-4\%\times\left(1-12\%\right)\right]/ 365}=\$97,911
Total\ Cost = Fee+\left( k \times \left\{ ACB-\left[ \frac{\left(SC-Fee\right)}{ECR\left(1-rr\right)}\right]\right\}\right)
Total\ Cost = 0+\left( \frac{12\%}{52} \times \left\{ \$35,000-\left[ \frac{\left(\$2-0\right)}{\frac{6\%\left(1-12\%\right)}{52}}\right]\right\}\right)=\$76.22
Total\ Cost = \$100-\left( \frac{12\%}{52} \times $35,000\right)=\$19.23
Total\ Cost = 0+\left( \frac{10\%}{52} \times \left\{ \$15,000-\left[ \frac{\left(\$10-0\right)}{\frac{4.5\%\left(1-12\%\right)}{52}}\right]\right\}\right)=\$3.59
Total\ Cost = \$100-\left( \frac{10\%}{52} \times $15,000\right)=\$71.15
NPV=\frac{1,000\times$0.40}{10\%/12}-\$60,000=-\$12,000
NPV=\frac{5,000\times$0.40}{10\%/12}-\$40,000=\$200,000
NPV=\frac{1,000\times$0.40}{5\%/12}-\$40,000=\$56,000
NPV=\frac{1,000\times$1}{10\%/12}-\$40,000=\$80,000
NPV=\frac{5,000\times$1}{5\%/12}-\$60,000=\$1,140,000
NPV=\frac{1,000\times$0.40}{(1+.10)^{(1/12)}-1}-\$40,000=\$10,162
NPV=\frac{1,000\times$0.40}{(1+.10)^{(1/12)}-1}-\$60,000=-\$9,838
NPV=\frac{5,000\times$0.40}{(1+.10)^{(1/12)}-1}-\$40,000=\$210,811
NPV=\frac{1,000\times$0.40}{(1+.05)^{(1/12)}-1}-\$40,000=\$58,181
NPV=\frac{1,000\times$1}{(1+.10)^{(1/12)}-1}-\$40,000=\$85,405
NPV=\frac{5,000\times$1}{(1+.05)^{(1/12)}-1}-\$60,000=\$1,167,258
PV=\frac{-\$20,000}{\left[1+\left(.12\times\frac{4}{365}\right)\right]}-\$8.35=-\$19,982
PV=\frac{-\$20,000}{\left[1+\left(.12\times\frac{1}{365}\right)\right]}-\$3.00=-\$19,996
PV=\frac{-\$20,000}{\left[1+\left(.08\times\frac{4}{365}\right)\right]}-\$8.35=-\$19,991
PV=\frac{-\$20,000}{\left[1+\left(.08\times\frac{1}{365}\right)\right]}-\$3.00=-\$19,999
\frac{\frac{\$8.35-\$3.00}{\$20,000}}{4-1}\times365=3.254\%
Z=\frac{\left|\$0-\$300,000\right|}{\$275,000}=1.091
EFN=\frac{\Delta S}{S_o}\times TA-\frac{\Delta S}{S_o}\times CL-PM\times S_1\times (1-b)
EFN=30\%\times\$3,000-30\%\times\$500-\left[\frac{\$479.8}{\$5,500}\times\left(\$5,500\times130\%\right)\times\left(1-\frac{\$400}{\$479.8}\right)\right]
EFN=\$900,000-\$150,000-\$103,740=\$646,260