Algebra over a field

From Wikipedia, the free encyclopedia

This article is about a particular kind of vector space. For other uses of the term "algebra" see algebra (disambiguation).

In mathematics, an algebra over a field K, or a K-algebra, is a vector space A over K equipped with a compatible notion of multiplication of elements of A. A straightforward generalisation allows K to be any commutative ring.

(Some authors use the term "algebra" synonymously with "associative algebra", but this article does not. Note also the other uses of the word listed in the algebra article.)

Contents

[edit] Definitions

Let K be a field, and let A be a vector space over K equipped with a binary operation (ie if x and y are any two elements ("vectors") of A, xy is the product of x and y). Then if the binary operation is bilinear, which means that the following identities hold for any three elements x, y, and z of A, and all elements ("scalars") a and b of K:

  • (x + y)z = xz + yz
  • x(y + z) = xy + xz
  • (ax)(by) = (a b)(xy)

we call A an algebra over K, we say that A is a K-Algebra, and K is the base field of A. The binary operation is often referred to as multiplication in A. According to the convention adopted in this article (see above), multiplication of vectors is not necessarily associative.

K can be a commutative ring, in which case A and K form a module, with bilinear multiplication again satisfying the above identities. In this case, A is a K-algebra, and K is the base ring of A.

Two algebras A and B over K are isomorphic if there exists a bijective K-linear map f : AB such that f(xy) = f(x) f(y) for all x,y in A. For all practical purposes, isomorphic algebras differ only by notation.

[edit] Properties

For algebras over a field, the bilinear multiplication from A × A to A is completely determined by the multiplication of basis elements of A. Conversely, once a basis for A has been chosen, the products of basis elements can be set arbitrarily, and then extended in a unique way to a bilinear operator on A, i.e. so that the resulting multiplication will satisfy the algebra laws.

Thus, given the field K, any algebra can be specified up to isomorphism by giving its dimension (say n), and specifying n3 structure coefficients ci,j,k, which are scalars. These structure coefficients determine the multiplication in A via the following rule:

\mathbf{e}_{i} \mathbf{e}_{j} = \sum_{k=1}^n c_{i,j,k} \mathbf{e}_{k}

where e1,...,en form a basis of A. The only requirement on the structure coefficients is that, if the dimension n is infinite, then this sum must always converge (in whatever sense is appropriate for the situation).

Note however that several different sets of structure coefficients can give rise to isomorphic algebras.

When the algebra can be endowed with a metric, then the structure coefficients are written with upper and lower indices, so as to distinguish their transformation properties under coordinate transformations. Specifically, lower indices are covariant indices, and transform via pullbacks, while upper indices are contravariant, transforming under pushforwards. Thus, in mathematical physics, the structure coefficients are often written ci,jk, and their defining rule is written using the Einstein notation as

eiej = ci,jkek.

If you apply this to vectors written in index notation, then this becomes

(xy)k = ci,jkxiyj.

If K is only a commutative ring and not a field, then the same process works if A is a free module over K. If it isn't, then the multiplication is still completely determined by its action on a generating set of A; however, the structure constants can't be specified arbitrarily in this case, and knowing only the structure constants does not specify the algebra up to isomorphism.

[edit] Kinds of algebras and examples

A commutative algebra is one whose multiplication is commutative; an associative algebra is one whose multiplication is associative. These include the most familiar kinds of algebras.

The best-known kinds of non-associative algebras are those which are nearly associative, that is, in which some simple equation constrains the differences between different ways of associating multiplication of elements. These include:

  • Jordan algebras, for which we require (xy)x2 = x(yx2) and also xy = yx.
    • every associative algebra over a field of characteristic other than 2 gives rise to a Jordan algebra by defining a new multiplication x*y = (1/2)(xy + yx). In contrast to the Lie algebra case, not every Jordan algebra can be constructed this way. Those that can are called special.
  • Alternative algebras, for which we require that (xx)y = x(xy) and (yx)x = y(xx). The most important examples are the octonions (an algebra over the reals), and generalizations of the octonions over other fields. (Obviously all associative algebras are alternative.) Up to isomorphism the only finite-dimensional real alternative, division algebras (see below) are the reals, complexes, quaternions and octonions.
  • Power-associative algebras, for which we require that xmxn = xm+n, where m≥1 and n≥1. (Here we formally define xn recursively as x(xn-1).) Examples include all associative algebras, all alternative algebras, and the sedenions.

More classes of algebras:

  • Division algebras, in which multiplicative inverses exist or division can be carried out. The finite-dimensional alternative division algebras over the field of real numbers can be classified nicely. They are the real numbers (dimension 1), the complex numbers (dimension 2), the quaternions (dimension 4), and the octonions (dimension 8).
  • Quadratic algebras, for which we require that xx = re + sx, for some elements r and s in the ground field, and e a unit for the algebra. Examples include all finite-dimensional alternative algebras, and the algebra of real 2-by-2 matrices. Up to isomorphism the only alternative, quadratic real algebras without divisors of zero are the reals, complexes, quaternions, and octonions.

[edit] Index-free notation

The definition of a k-algebra is also frequently given in index-free notation. In this case, a k-algebra is a field K and a ring A together with a ring morphism

\eta:K\to A

Since η is a ring morphism, then one must have either that A is the trivial ring, or that η is injective. This definition is equivalent to that above, with scalar multiplication

K\times A \to A

given by

ka \mapsto \eta(k) a.

[edit] K-algebra morphism

Given K-algebras A and B, a K-algebra morphism is a map f:A\to B such that f is a ring morphism that commutes with the scalar multiplication defined by η; that is, the following diagram commutes:

\begin{matrix}  && K &&   \\ & \eta_A \swarrow & \, & \eta_B \searrow & \\ A &&  \begin{matrix} f \\ \longrightarrow \end{matrix}  && B  \end{matrix}

which one may write as

f(ka) = kf(a)

for all k\in K and a \in A. The space of all K-algebra morphisms is frequently written as

\mathbf{Alg}_K (A,B)

A K-algebra isomorphism is a bijective K-algebra morphism.

[edit] See also