Talk:Alcubierre drive

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
B This article has been rated as B-Class on the assessment scale.
Low This article is on a subject of Low importance within physics.

This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.

Archived talk from metric article: Talk:Alcubierre drive/MetricArchive

Contents

[edit] Cite your sources!

This is nonsense. Mass bends spacetime. Object would still be subject to relativistic effects. (unsigned 210.55.240.194)

Providing more information than just disputing it is preferable. --Cool Cat My Talk 15:38, 20 Mar 2005 (UTC)

[edit] what does the second image mean?

I might be completely missing the point of the Alcubierre Drive, but what exactly does the second image represent ? There are no labels or information telling us anything. Does it represent the distance that the space is contracted behind and in front of the ship, or something else ? There should at least be a descriptive caption (or an explanation in the text referring to this image). I await elucidation. :) Mpatel

What second image? I only see one image. That image alleges to illustrate a characteristic effect of the Alcubierre style warp drives: the expansion tensor of the canonical ADM congruence, which is a timelike geodesic congruence, shows contraction ahead of the bubble and expansion behind. This is not what causes the bubble to move (no cause or method for creating or controlling it is apparent), but only a description of how the bubble effects this particular family of nonspinning inertial observers. Jose Notario has introduced another kind of warp drive spacetime which supresses this expansion/contraction effect.

---CH

The second image (or diagram to be correct), in the 'maths of the Alc. drive' section, shows a 3D picture of a :sort of crest and trough of a wave - I assume it depicts some sort of contraction/expansion effect, but I'm not :sure.
I think both topics, (Alcubierre Drive and metric) should be merged.--Mpatel 09:07, 24 Jun 2005 (UTC)


OK, I just didn't know what you referring to before; now I do. The figure in question (not by me) is a graph of the expansion scalar of the canonical congruence in the ADM chart for the original Alcubierre spacetime. In an unpublished paper I argued at great length (too great, really!) why this spacetime is by no means a "solution" of the EFE.---CH (talk) 01:36, 22 August 2005 (UTC)

[edit] Proposal to Merge This with Another Article

Hi all, I have just corrected a misconception and clarified the present status of 'Warp Drives' in the article on the Alcubierre metric. Unfortunately, at present this article suffers from the same problems I pointed out for the earlier version of the Alcubierre metric article. In addition, I think that the two articles on the same topic is redundant, so the two should be merged.

Possibly instead of explaining the original warp drive in great detail, a slighly simpler version should be used? (After all, the original paper is on-line.) Some years ago, inspired by Broeck's paper, I did some work on simple eigenthing objections, similar to some which have now appeared in print, and wrestled with the energy requirement problem. In fact, I wrote a long unpublished paper on the simpler versions I have in mind.

Someone should add something about the Notario variant, which is expansionless and therefore significantly different from the Alcubierre drive and minor variants such as the one I considered.

And, the merged articles should be retitled warp drive spacetimes, since this term is now fairly standard in the small but slowly growing literature on warp drives. ---Chris Hillman

The merger sounds like a good idea. ---Mpatel 09:07, 24 Jun 2005 (UTC)

And relatively easy. I was just about to do it when I noticed an edit conflict with another user, User:Roadrunner, which almost resulted in my losing my work while I was modifying the other article! Annoying that the new Wiki software seems to have a bug which requires users to try to manually resolve problems arising from edit conflicts.

It seems that User:Roadrunner and I disagree about whether or not the Alcubierre spacetimes count as "solutions". I am confident that I can support my contention that they are not (I asked him to read the article on exact solutions of Einstein's field equations, but suggested on the talk page of the article that we all lay off these articles and resolve this controversy on the talk page of the other article. Otherwise, I fear than even if everyone tries to behave nicely, if two of us happen to be modifying one of these pages at the same time, we could potentially lose everyone's work. Presumably no-one wants that!

I think the other article is fair regarding the status of warp drives, but if the two articles can be merged, presumably we don't want to discard the work of the person who made the funky figure. Fortunately, I can elaborate (at arbitrary length!) on the meaning of the expansion tensor, ADM observers, and so forth. Actually, in my unpublished paper I had many more figures which could perhaps be imported to the merged article, but I already fear that it is in danger of getting too long.---CH (talk) 1 July 2005 06:02 (UTC)

[edit] Only two people voted so far...

... (myself and Mpatel, both of whom voted to merge), but this message has been up for quite a while, so I'll announce that I intend to carry out the merger as soon as I get a chance.---CH (talk) 01:39, 22 August 2005 (UTC)

A further vote from a relativist to merge!

[edit] Captain Future?

Wasn't such an idea used in Captain Future? I saw it in French and they were talking of vitesse|mode ondulatoire (undulating/waving speed|mode) —Reply to David Latapie 15:07, 16 October 2005 (UTC)

[edit] New Figure?

Alcubierre's idea is that the spacetime inside the bubble would not be bent (see diagram). Any objects in the bubble would experience no such effects, as spacetime is flat in the center of the bubble, and then gradually becomes more curved towards the edge of the bubble. There would be extreme tidal forces and relativistic time dilations towards the edges of the bubble, where spacetime is extremely bent. A good diagram is given here [1]. (This is a better diagram of the curvature than the one at present, should it be replaced?) Sloverlord 14:21, 10 December 2005 (UTC)

You need to know the current image policy before you add any figure. And what is that policy? Darn if I know, I can never seem to find it when I need it. Try asking at Village Pump. If you upload an image which doesn't have the required license (check with the author), it will be autodeleted.
When I get a chance, I plan to completely rewrite this article, adding my own figures. But this is a rather low priority, since this topic has not been 'hot' in the arXiv for several years.---CH 20:28, 10 December 2005 (UTC)
According to Tufts university proffesors Michael J. Pfenning and L.H. Ford (article avaible at xxx.lanl.gov/abs/gr-qc/9702026) the amount of negative energy required for making a warp bubble, that would be big enouph for a person would be unatainable. So I have been trying to use Lorenz contraction to make a ship with incredabley small vollume so there won't be so much negative enregy needed. Unforently not being a physist I don't know how to test my idea, for all I know the warp bubble needs to be a perfect sphere, also to cause lorenz contraction I have to have the ship moving very, very fast, would the ship neccisarly shoot out of the bubble, or is there some way to accomidate the ship which has some non-zero local velocity?
Thanks in advance ---Spaceling
P.S. Sorrey I had to use the edit function I just didn't know how else to post
Hi, Spaceling: first things first: click here to create a free user account. You just need to make up a "handle" or username, such as Spaceling. Now you can add dated and signed comments in talk pages like this by going to the page you want to edit, clicking the button at top, scrolling down the pane (you should add new comments at the bottom of the appropriate section), and typing something like this:
::Your comment. ---~~~~
The colons tab your comment, which is good idea for readability. For example:
FirstComment ---FirstUser Date/Time
SecondComment ---SecondUser Date/Time
ReplyToSecondComment ---FirstUser Date/Time
ThirdComment ---ThirdUser Date/Time
Does this help? ---CH 06:21, 6 February 2006 (UTC)
As for the physics part of your question, you said you are not a physicist, but what grade level are you at and what physics courses have you taken?
Lorentz contractions won't help you. Various physicists have suggested possible fixes, but these all seem to raise new objections. Currently, the consensus is that this notion is a speculation not grounded in any plausible physical mechanism, and which is probably in fact no more possible than perpetual motion. However, rigorous proofs are lacking.---CH 06:25, 6 February 2006 (UTC)
ok I am logged in. This helps very much thank you
I a collage senior who took a basic physics course called "Newtonian Dynamics" and an astronmey course. I got a D+ in the physics course which discoraged me from choosing physics as a major, but I got an A- in the astronmey course.
I have also taken two basic caculus courses and learned simulation modeling in my econ clases a skill useful for testing out ideas.
Everything else I know about physics is self tought something that is possible because physist have been trying to reach out to the common person by writing dumbed down books on advanced physics.
At anyrate if what it sounds from what you are saying the Alcubierre drive could be fundemntaly flawed and is cannot be redeemed.
Still i have trouble imagining going faster than light with out warping spacetime. I will check out the wormhole section though I would imagine they are equaly as speculative and otherwise flawed.---User:Spaceling 11:21, 6 Febuary 2006

I don't know much about the Alcubierre drive. All i know is that the exotic energy puts it in the impossiblity list. I found a link that states the Alcubierre drive can function without exotic energy: The Positive Energy Spation Warp Drive

Use your edit button to see how I put brackets [ ] around the link you found and added title. This is how to quote a link in WP. As for the content, I haven't looked at this, but I trust you realize that some "paper" you find someplace on the web is even less reliable than arXiv eprints, which in this area at least are not all of acceptable quality. In the end, there's no substitute for knowledge of math and physics in evaluating physics eprints, but anyone can develop some common sense rules of thumb. Sounds like you are doing that, since it seems you now recognize that caution is required in evaluating claims regarding warp drives.---CH 23:32, 16 February 2006 (UTC)

[edit] Soliton Wave

This sounds similar to the Soliton Wave technology described in episode 110, "New Ground", of Star Trek: Next Generation. --tvleavitt 06:42, 13 May 2006 (UTC)

[edit] Star Trek

Fanboy mode on... Alcubierre may not be mentioned explicitly, but the Next Generation Technical Manual has an image of a warpfield which clearly shows a two-lobed structure, one ahead of the ship and one behind. (Note that this isn't a fan drawing, it's a color-inverted scan from the official book.) It looks an awful lot like the graph of the Alcubierre metric. The notion that relativistic effects do not affect warp travel was also mentioned, if memory serves. Obviously the two aren't exactly the same, but the shape of the drawing and the constant talk in the series about various types of "warp bubbles" seems to me a pretty clear reference. Worth a mention, at least?

[edit] Merged in Spacewarp

I merged in what I could from Spacewarp. Its going to need further refinement. Cwolfsheep 02:40, 24 July 2006 (UTC)

[edit] Merged in Alcubierre metric

I'm not proud of this merge, but I disbursed the content as evenly as possible. Someone's going to need to check the math sections: they appear to be the same thing, but they're different formulas. I also tried moving the talk page from the metric article, but not sure if I did it right. Cwolfsheep 03:01, 24 July 2006 (UTC)

[edit] Fiction: Dune

In the movie the spice, Melange, has the property of bending space-time in a similar manner to the Alcubierre drive. Dessydes 14:49, 21 August 2006 (UTC)

The Guild only uses spice for its Precog effects, the folding is a Holtzman effect. I don't recall the movie munging this, but I'd have to watch it again. The Alcubierre drive is a warp drive, Dune uses a fold drive (see Holtzman Drive) ---XanMat 20:06, 20 October 2006 (UTC)

[edit] Energy Requirements and Effective Travel Times / Speeds

The one thing I think that is both missing from, and of interest to those viewing this article is the (theoretical) values for various energy requirements, travel times and/or relative speeds. Not being a theoretical physicist, I am yet very interested in the field, particularly new developments. Hence, I would be interested to see any statistics relating to the energy requirements (both from the original Alcubierre metric AND from Loup, Waite and Halerewicz' Reduced total energy requirements for a modified Alcubierre warp drive spacetime mathematics.

If possible, maybe an addition could be made to the original article outlining these three statistics for easily recognised distances, for example: From Sol to Earth, Jupiter, Pluto, the Alpha Centauri system, Rigel, Betelgeuse, and the Milky Way's centre, as well as including other recognisable distances, such as: crossing Milky Way's diameter and from the Milky Way to Andromeda (M31).

Where the variation of energy usage may increase/decrease the values for effective travel time and effective speed, this additional data could be included, also.

This data (I feel) would be of great interest to those of us unable to sift through the mathematics and the background physics necessary to fully comprehend the complexity of the Alcubierre metric. Twphillips 12:15, 13 January 2007 (UTC)

[edit] Possible re-structuring?

I see this article is tagged "may be confusing or unclear for some readers". There are at least 2 classes of potential reader: those with no mathematical understanding of general relativity (including me) and those with at least some. So I suggest the article should have 4 major sections (including table of contents):

  • Introduction. Something like "In 1994 Alcubierre proposed a hypothetical models of: a space ship drive capable of 'faster than light' travel; a model of space-time (the Alcubierre Metric) which described the 'warp field' which the drive would use. The intro should use pop-science terminology to avoid frightening off the non-specialist reader.
  • Table of contents. This will reassure more mathematically-inclined readers that the article also contains material that meets their level of interest.
  • "Popular"-level explanation. The second paragraph of the current article describes the basic idea in terms which are just about simple enough. This should be followed by explanations of the difficulties: is it possible at all (exotic matter?)?; is it economically feasible, even after the later refinements (how much exotic matter?)?; how to get it started and does this require slower-than-light space travel?; the difficulty of flying blind because the warp bubble is causally disconnected from the rest of space-time; etc. The "popular" section would also contain the Trekkie stuff ("The Alcubierre drive and science fiction" and "Warp fields")
  • Mathematical exposition, covering much the same ground but more technically.

Of course a competent physicist would have to check the "popular" section to ensure that it contained no gross blunders or misrepresentations beyond those inherent in trying to describe a very mathematical subject in ordinary language.

It might even be a good idea to split the article into a popular and a technical article, with the popular article titled "Alcubierre drive" and linking to an article titled "Alcubierre drive (technical analysis)". This would give Wikipedia the option to freeze the popular article after sign-off by a competent physicist and leave the technical article open for editing to take account of new technical publications.

Such a division might also help to get rid of the "requires authentication or verification by an expert" and "missing citations and/or footnotes" tags.Philcha 23:00, 16 February 2007 (UTC)

Perhaps a brief popular-level section might be a good idea (not a real article; there already exist articles with the Trekkie stuff, Warp drive for one). But it is rather hard to write such a section without over-simplifications and misleading notions like the (non-existing) 'warp field' which would put off any serious reader. --Seador 13:55, 17 February 2007 (UTC)
I'd put "warp field" in quotes to show that it's just a label, not an accurate description. Or can you suggest another term which is more correct but still brief and easily understood by non-specialists? And similar replacements for any other terms you're concerned about in my proposal?Philcha 16:30, 6 April 2007 (UTC)
"Warp field" is not a misnomer, but a misconception. That's why I wouldn't use it at all. As for a popular intro, it seems that the first paragraph (that above the Contents) is precisely what you proposed?--Seador 13:20, 7 April 2007 (UTC)

[edit] Warp fields

I would delete that section, because 1) it seems to be more appropriate in Warp drive. 2) The passages like "they allow the transport of physical objects or the transmission of information faster than the speed of light, which is currently understood to be impossible under most circumstances in the real universe", or "While there are natural phenomena that might be likened to warp fields, such as the area of distorted spacetime thought to exist around a black hole, no feasible method of artificially generating one has yet been proposed" look terribly strange amid the discussion of the Alcubierre bubble, which is exactly a means of transportation of physical objects or the transmission of information faster than the speed of light and which is an area of distorted spacetime (though not around a black hole). --Seador 01:30, 21 February 2007 (UTC)

[edit] Importance

Dear Edward, Aren't you a bit more positive than consistent? If the light speed barrier is important, than apparently so is one of very few proposed ways to overcome it. Whether this way is obscure is disputable (I, for one, find it quite transparent). But in any case obscurity can be a demerit of an article, not of a metric. So, just tell me what exactly you regard especially obscure in the article and I'll try to clarify that point (with perhaps somebody's help). --Seador 14:43, 25 February 2007 (UTC)

By "obscure" I mean not very well-studied, and there is little that you can do to remedy that unless you want to do a Ph. D. thesis or two on this. Let me put it to you this way: There are plenty of important solutions of the Einstein field equations, such as the Schwarzschild solution, the Kerr solution, and the FLRW metric. This one involves that use of an undefined "negative energy" which most physicists consider to be unphysical. I know that this metric is not a joke and do not dispute its notability. However, the assessment is done in regards to physics as a whole and not interstellar travel. This is a minor topic even within the scope of relativity. The Alcubierre drive iteself is highly speculative, and as I keep trying to emphasize is not expected to work. Now if someone should produce a working Alcubierre drive, then the status of this article will change dramatically. In the meantime, please keep the broad scope of Wikiproject Physics in mind, and remember that Wikipedia is not a crystal ball. --EMS | Talk 18:00, 25 February 2007 (UTC)

Well, tastes (and assessments of importance) differ. However I'd like to dispute your arguments.

It is by no means a minor topic in relativity (and even in physics as a whole). For about a century people thought there is a fundamental limit on how soon a signal can get from one point to another. Now, owing to Alcubierre's paper (and the works inspired by it) we know that there is no such limit. I think this a very significant step. The fact that his bubble cannot be built in the foreseen future is immaterial, just because the paper is importance to (theoretical) physics, not to interstellar travel. And that is why the status of this article will not change at all, if someone produce a working Alcubierre drive (which is not impossible, recall that in 1944 many physicists, including Heisenberg, considered the A-bomb to be unphysical by exactly the same reason – an unrealistic quantity of exotic (fissionable) matter was thought to be necessary). That would be a revolution in engineering, applied physics – whatever but theoretical physics, in which its possibility is already understood. I also don't think that most physicists consider "negative energy" to be unphysical. That the WEC breaks down sometimes is an experimentally confirmed fact, see Casimir effect.--Seador 19:51, 26 February 2007 (UTC)

First of all, this metric does not at all remove the light speed barrier, which always applies locally in relativity and even applies within the "bubble" created by this pseudo-warp drive. This is instead a special type of spacetime curvature which (if real) is able to propagate itself at superluminal speeds. Secondly, the Casimir effect is not all that relevant, as the type and amount of "negative energy" are quite beyond that. In fact, not only is the WEC violated by the Alcubierre, but the strong and dominant energy conditions are also.
The real issue here seems to be that you like this metric. That is not a reason to up-rate it. I repeat that this metric is not taken seriously by most physicists, which very much reduces its importance in the overall scheme of things. Let me put it to you this way: If I was creating an overview course on physics, the Alcubierre drive is not something that I would immediately think of including. That is the test for being of high importance IMO. --EMS | Talk 21:47, 26 February 2007 (UTC)


Yes, I do like the metric and you obviously don't. But apart from that there are some rational considerations. And yours confuse me:

First of all, this metric does not at all remove the light speed barrier

It is 26 lyr from the Sun to Vega and the metric is flat between them. For a century people inferred from this that it cannot take less that 26 yr to reach Vega. Now we know that this is not necessarily the case. To me it looks removing the light speed barrier.

Secondly, the Casimir effect is not all that relevant, as the type and amount of "negative energy" are quite beyond that. In fact, not only is the WEC violated by the Alcubierre, but the strong and dominant energy conditions are also.

The Casimir effect produces the "negative energy" of exactly the required type (the WEC violation always implies the SEC and DEC violations). As for the "amount" the estimates range from 10^67 g to 10^{-5} g and are based on the "quantum inequality" which has never been proved in the 4-dimensional case. Isn't this a too feeble basis for proclaiming something "unphysical"?

I repeat that this metric is not taken seriously by most physicists

I cannot even imagine how you know what most physicists think. Well, you wouldn't include the Alcubierre drive in your imaginary overview course on physics. But I would. So, I don't think this is a good criterion.--Seador 21:34, 28 February 2007 (UTC)

Seador - I have studied general relativity, and regularly meet with other physicists to discuss my own ideas on the topic. I also regularly read the articles in various science news site as well as subscribe to Nature and Science. I can tell you for a fact this time metric raise quite a few eyebrows when it came out, but as more details were gleaned was quickly dismissed as a most impractical scheme for interstellar travel. Look at it this way: A metric that allows superluminal speeds can also act as a time machine, and this is not the first time travel metric to be derived from GR. They all require some condition that at best is well beyond the ability of modern technology to produce.
You also claim that WEC violations imply SEC and DEC violations, but QM does violate WEC but not SEC and DEC. You also poo-poo the mass requirement, but apparently several stellar masses of both positive and negative energy are needed to create a warp bubble that size of a small room even if this metric is real!
Overall, I agree with you that this is a neat metric. However, in the overall scheme of physics it is at best controversial when people stop to consider it at all. If you can show me evidence that this is a topic of regular and intense discussion at this time, I will agree to the "high" importance designation. However, if all that you can show me are at best a dozen or fewer articles a year on this, that only shows that it is on the sidelines at this time. --EMS | Talk 22:25, 28 February 2007 (UTC)
P.S. This point that I am trying to make is that importance is a function of how often a topic is considered and/or put to use either direction or indirectly. General relativity is the basis of scolarly articles that are submited on a daily basis, and you cannot dirve your car without making use of classical mechanics. For high importance, I have found topics like acceleration and black body. If the Seador Interstellar Lines existed and was regularly selling tickets for ships operating using the Alcubierre drive, I would consider that to be a higly important topic. Instead, I must ask you not to count your chickens before they hatch (unless you have used this drive to peak into the future). --EMS | Talk 22:45, 28 February 2007 (UTC)

I agree that being a subject of numerous research papers or being a part of every lawn-mower is a sufficient condition for being acknowledged important. The question is whether this is a necessary condition as well. You probably wouldn't deny the importance (for physics) of the string theory or of the concept of causality. But how many papers a year are published on causality? Have you ever seen a string-power lawn-mower?

Also, as you attach such significance to realizability, let me be pedantic here: a) It takes only a few milligrams (and not several stellar masses!) of exotic matter to support an advanced version of the Alcubierre drive and even that is true only if we believe in "quantum inequalities" , b) The Casimir effect does violate all three Energy conditions (as follows from the fact that it violates even the Null energy condition).--Seador 17:16, 1 March 2007 (UTC)

The more I look at energy condition and Casimir effect, the more it hits me that the WEC is also obeyed by the Casimir effect. I was equating the WEC with conservation of energy, which QM violates in a time-dependent was in accord with the equation I gave above. However, the energy conditions are dealing with mass-energy densities. In the case of the Casimir effect, the cause is a loss of real energy (in the form of reduced virtual pair production) between the plates instead of the appearance of negative energy. There is a difference here. Other than in the form of potential energy, noone has ever observed a negative energy, and potential energy is not harnessable for the Alcubierre drive. (What it needs is something more in accord with a "negative mass", being a piece of matter that it repelled by gravitation.)
So this brings me back to the starting point: It is a neat metric, but if the enabling conditions are not physical, then neither is the metric.
I also take issue with your claim that the level of consideration is not a necessary consideration in terms of importance. An important topic is one the you cannot keep from using, and this one is very, very easy to avoid. --EMS | Talk 18:06, 1 March 2007 (UTC)


Hmm… I, for one, find it much easier to avoid Brown dwarfs. This obviously depends on the field of interest and expertise. You probably keep from using the concept of FTL travel just because yours are sufficiently far from relativity (I judge from your response: the null (and hence weak, strong, dominant...) energy conditions actually are violated by the Casimir effect in the case of two parallel plates; conservation of energy, on the contrary, does hold in quantum (as well as in classical, relativistic,…) mechanics; finally, in general relativity there is no such thing as potential energy). If it were for me I would perhaps rate the topic as "Top", but as a compromise I propose "High" ("Subject contributes a depth of knowledge", doesn't it?). Or shall we seek a mediator?--Seador 13:53, 3 March 2007 (UTC)

Though I am not expert enough on the topic to judge whether this model is physically possible or not, it appears to be an interesting 'loophole' through the light speed barrier. On the other hand, an the article like for example Einstein field equations is rated mid importance, though it clearly has a broader impact on the field of physics than this one. Let me propose a compromise. It seems like you are arguing between 'low' and 'high' importance, why not settle for 'mid'? Then focus your energy on making this article meet GA standards.--V. 21:38, 3 March 2007 (UTC)

Well, looks fair. (Though now that I've learnt that the Einstein equations are regarded in Wikipedia less important than, say, the Kondo effect I'm not sure any more that I understand what importance is).--Seador 01:02, 6 March 2007 (UTC)
Kondo effect was called "high" for the same reason as this one was given that rating: Someone really likes that topic. "Importance" is a measure how essential the topic is in a given subject area, in this case physics. I could argue for the Einstein field equations as being of high importance, but they are very arcane and so I suspect that mid importance is actually fair. (In the scope of relativity, they would be of top importance, but that is another matter.) This metric that is arcane even within the field of relativity. It really is a filling in of details than an essential topic itself. I argue against "mid" since that is contribiting to a depth of knowledge, and I have a hard time seeing where I would place this metric ahead of or even beside other more accepted EFE solutions such as the Schwarzschild solution. --EMS | Talk 02:21, 6 March 2007 (UTC)
I think you are missing the point. The importance of Alcubierre's (in contrast to Schwarzschild's) metric has not to do with its being a solution to the arcane Einstein equations (in fact, it is not any more a solution than any other metric whatsoever). Suppose one day the Einstein equations prove to be wrong. That would undermine significantly the importance of the Schwarzschild solution, but would in no way affect the light-speed-barrier problem (that is, as long as we believe in the equivalence principle and special relativity; is there anything arcane in them?) and, correspondingly, the Alcubierre drive as its element.
Thus, it seems we need a mediator after all. Shall I look for one at Wikipedia:Third opinion?--Seador 23:56, 6 March 2007 (UTC)
3rd opionin: Since I'm not an expert in this area it's hard for me to access the importance of "warp drive" I think the bigger problem with this article is a lack of clarity and sources. You both really need to use references tags and footnotes so that readers will know where each specific claim is coming from. futurebird 00:45, 8 March 2007 (UTC)
Just a comment about this discussion. In my opinion the Alcubierre metric seems to cause an space inflation or expansion behind the propelled space time area and a space deflation in front of. Now as the current model of physical cosmology propose a cosmic inflation driven by a negative-pressure vacuum energy density in the early history of this universe, the idea of such a kind of a metric should not be ruled out by declaring it unphysical. werner 11:58, 8 March 2007 (UTC)

Also coming from 3O, it would really help if someone would quickly sum up the problem, i.e., "we disagree on whether the text '...' should be in the article; I think yes because ..., while User:Foo thinks no because ...". Otherwise, people may have trouble helping out here. Sandstein 21:57, 8 March 2007 (UTC)


Like it is stated in the request the disagreement is not about a text, but about the rating of the topic. EMS lowered it to "Low" because it is 1) not mainstream and 2) at the moment cannot be implemented in any working device. And I think that it should be "High", because it is the (first) proof of the very important (in my view) fact: in contrast to once common belief, general relativity doesn't put any fundamental restriction on how soon a signal from one point can get to another. --Seador 23:27, 8 March 2007 (UTC)

Seador - Wikipedia is not a soapbox, and wormholes already have scooped the Alcubierre metric in providing a means to propogate signals in a faster-than-lightspeed fashion anyway. Your argument keeps boiling down to this being important to you, but what matters is whether this is important to the scientists in the field. I am somewhat involved in the field, and I see no sign that the Alcubierre metric is taken seriously within it. If this was the first metric of its ilk, there may have been more excitement. However, wormholes and time travel have been part of the GR landscape for quite some time, and the Alcubierre metric fits very nicely into that collection. --EMS | Talk 16:23, 9 March 2007 (UTC)

My advice to the wisest of you would be to let the matter rest, and rest assured that the reader will judge this article on its worth and not its rating. Importance is after all a personal affair, even in physics, and only nature can prove us wrong in the end. An article that is well written will win the most attention and such an article, being coherent and comprehensible, requires no rating to commend it. --V. 18:18, 9 March 2007 (UTC)