Albert Einstein

From Wikipedia, the free encyclopedia

Editing of this article by unregistered or newly registered users is currently disabled. If you are prevented from editing this article, and you wish to make a change, please discuss changes on the talk page, request unprotection, log in, or create an account.

Albert Einstein
Photographed by Oren J. Turner (1947)
Photographed by Oren J. Turner (1947)
Born March 14, 1879
Ulm, Württemberg, Germany
Died April 18, 1955 (aged 76)
Princeton, New Jersey
Residence Germany, Italy, Switzerland, USA
Citizenship German (1879-96, 1914-33)
Swiss (1901-55)
American (1940-55)
Ethnicity Jewish
Field Physics
Institution Swiss Patent Office (Berne)
Univ. of Zürich
Charles Univ.
Prussian Acad. of Sciences
Kaiser Wilhelm Inst.
Univ. of Leiden
Inst. for Advanced Study
Alma mater ETH Zürich
Known for General relativity
Special relativity
Brownian motion
Summation convention
Photoelectric effect
E=mc²
Einstein field equations
Unified Field Theory
Bose–Einstein statistics
EPR paradox
Notable prizes Nobel Prize in Physics (1921)
Copley Medal (1925)
Max Planck medal (1929)

Albert Einstein(German pronunciation ) (March 14, 1879April 18, 1955) was a German-born theoretical physicist who is widely considered to have been one of the greatest physicists of all time. While best known for the theory of relativity (and specifically mass-energy equivalence, E=mc²), he was awarded the 1921 Nobel Prize in Physics “for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect.”[1]

Einstein's many contributions to physics include his special theory of relativity, which reconciled mechanics with electromagnetism, and his general theory of relativity which extended the principle of relativity to nonuniform motion, creating a new theory of gravitation. His other contributions include relativistic cosmology, capillary action, critical opalescence, classical problems of statistical mechanics and their application to quantum theory, an explanation of the Brownian movement of molecules, atomic transition probabilities, the quantum theory of a monatomic gas, thermal properties of light with low radiation density (which laid the foundation for the photon theory), a theory of radiation including stimulated emission, the conception of a unified field theory, and the geometrization of physics.

Works by Albert Einstein include more than fifty scientific papers but also non-scientific works, including About Zionism: Speeches and Lectures by Professor Albert Einstein. (1930), Why War? (1933, co-authored by Sigmund Freud), The World As I See It (1934), Out of My Later Years (1950), and a book on science for the general reader, The Evolution of Physics (1938, co-authored by Leopold Infeld).[2]

In 1999 Einstein was named Time magazine's "Person of the Century". In popular culture the name "Einstein" has become synonymous with genius.

Contents

Youth and schooling

Young Albert before the Einsteins moved from Germany to Italy.
Young Albert before the Einsteins moved from Germany to Italy.

Albert Einstein was born into a Jewish family in Ulm, Württemberg, Germany. His father was Hermann Einstein, a salesman. His mother was Pauline Einstein, (née Koch).

Although Albert had early speech difficulties, he was a top student in elementary school (Rosenkranz 2005, p. 29).[3]

In 1880, the family moved to Munich where his father and his uncle founded a company, Elektrotechnische Fabrik J. Einstein & Cie, that manufactured electrical equipment, providing the first lighting for the Oktoberfest and cabling for the Munich suburb of Schwabing. The Einsteins were not observant, and Albert attended a Catholic elementary school. At his mother's insistence, he took violin lessons, and although he disliked them and eventually quit, he would later take great pleasure in Mozart's violin sonatas.

When Albert was five, his father showed him a pocket compass. Albert realized that something in empty space was moving the needle and later stated that this experience made "a deep and lasting impression".[4] As he grew, Albert built models and mechanical devices for fun, and began to show a talent for mathematics.

In 1889, a family friend named Max Talmud (later: Talmey), a medical student,[5] introduced the ten-year-old Albert to key science and philosophy texts, including Kant's Critique of Pure Reason and Euclid's Elements (Einstein called it the "holy little geometry book").[5] From Euclid, Albert began to understand deductive reasoning (integral to theoretical physics), and by the age of twelve, he learned Euclidean geometry from a school booklet. He soon began to investigate calculus.

In his early teens, Albert attended the new and progressive Luitpold Gymnasium. His father intended for him to pursue electrical engineering, but Albert clashed with authorities and resented the school regimen. He later wrote that the spirit of learning and creative thought were lost in strict rote learning.

In 1894, when Einstein was fifteen, his father's business failed and the Einstein family moved to Italy, first to Milan and then, after a few months, to Pavia. During this time, Albert wrote his first "scientific work", "The Investigation of the State of Aether in Magnetic Fields".[6] Albert had been left behind in Munich to finish high school, but in the spring of 1895, he withdrew to join his family in Pavia, convincing the school to let him go by using a doctor's note.

Rather than completing high school Albert decided to apply directly to the ETH Zurich, the Swiss Federal Institute of Technology in Zurich, Switzerland. Without a school certificate, he was required to take an entrance examination. He did not pass. Einstein wrote that it was in that same year, at age 16, that he first performed his famous thought experiment, visualizing traveling alongside a beam of light.[citation needed]

The Einsteins sent Albert to Aarau, Switzerland to finish secondary school. While lodging with the family of Professor Jost Winteler, he fell in love with the family's daughter, Sofia Marie-Jeanne Amanda Winteler, called "Marie". (Albert's sister, Maja, his confidant, later married Paul Winteler.)[7] In Aarau, Albert studied Maxwell's electromagnetic theory. In 1896, he graduated at age 17, renounced his German citizenship to avoid military service (with his father's approval), and finally enrolled in the mathematics program at ETH. On February 21, 1901, he gained Swiss citizenship, which he never revoked.[8] Marie moved to Olsberg, Switzerland for a teaching post.

In 1896, Mileva Marić also enrolled at ETH, the only woman studying mathematics. During the next few years, Einstein and Marić's friendship developed into romance. Einstein's mother objected because she thought Marić too old, not Jewish and "physically defective".[9] Einstein and Marić had a daughter, Lieserl Einstein, born in early 1902.[10] Her fate is unknown.

In 1900, Einstein's friend Michele Besso introduced him to the work of Ernst Mach. The next year, Einstein published a paper in the prestigious Annalen der Physik on the capillary forces of a straw (Einstein 1901). He graduated from ETH with a teaching diploma.[citation needed]

The patent office

The 'Einsteinhaus' in Bern where Einstein lived with Mileva on the First floor during his Annus Mirabilis
The 'Einsteinhaus' in Bern where Einstein lived with Mileva on the First floor during his Annus Mirabilis

After graduation, Einstein could not find a teaching post; perhaps his brashness had irritated his professors. After almost two years of searching, a former classmate's father helped him get a job in Bern, at the Federal Office for Intellectual Property,[11] the patent office, as an assistant examiner. His responsibility was evaluating patent applications for electromagnetic devices. He learned to discern the essence of applications despite applicants' sometimes poor descriptions, and the director taught him "to express [him]self correctly".[citation needed] Einstein occasionally corrected design errors while evaluating patent applications. In 1903, Einstein's position at the Swiss Patent Office was made permanent, although he was passed over for promotion until he "fully mastered machine technology".[12]

Einstein's college friend, Michele Besso, also worked at the patent office. With friends they met in Bern, they formed a weekly discussion club on science and philosophy, jokingly named "The Olympia Academy". Their readings included Poincaré, Mach and Hume, who influenced Einstein's scientific and philosophical outlook.[13]

While this period at the patent office has often been cited as a waste of Einstein's talents,[14] or as a temporary job with no connection to his interests in physics,[15] the historian of science Peter Galison has argued that Einstein's work there was connected to his later interests. Much of that work related to questions about transmission of electric signals and electrical-mechanical synchronization of time: two technical problems of the day that show up conspicuously in the thought experiments that led Einstein to his radical conclusions about the nature of light and the fundamental connection between space and time.[12][13]

Einstein married Mileva Marić on January 6, 1903, and their relationship was, for the time, a personal and intellectual partnership. In a letter to her, Einstein wrote of Mileva as "a creature who is my equal and who is as strong and independent as I am."[16] There has been debate about whether Marić influenced Einstein's work; most historians do not think she made major contributions, however.[17][18][19] On May 14, 1904, Albert and Mileva's first son, Hans Albert Einstein, was born. Their second son, Eduard Einstein, was born on July 28, 1910.

The Annus Mirabilis

Albert Einstein, 1905
Albert Einstein, 1905

In 1905, while working in the patent office, Einstein published four times in the Annalen der Physik. These are the papers that history has come to call the Annus Mirabilis Papers:

  • His paper on the particulate nature of light put forward the idea that certain experimental results, notably the photoelectric effect, could be simply understood from the postulate that light interacts with matter as discrete "packets" (quanta) of energy, an idea that had been introduced by Max Planck in 1900 as a purely mathematical manipulation, and which seemed to contradict contemporary wave theories of light. This was the only work of Einstein's that he himself pronounced as "revolutionary". (Einstein 1905a)
  • His paper on Brownian motion explained the random movement of very small objects as direct evidence of molecular action, thus supporting the atomic theory. (Einstein 1905c)
  • His paper on electrodynamics of moving bodies proposed the radical theory of special relativity, which showed that if the speed of light is the same when measured by any observer no matter how they are moving, then real physical consequences must follow — e.g., clocks slow down and rulers contract when in motion, thus requiring fundamental changes to the notion of simultaneity. This paper also argued that the idea of a luminiferous aether—one of the leading theoretical entities in physics at the time—was superfluous. (Einstein 1905d)
  • In his paper on the equivalence of matter and energy (previously considered to be distinct concepts), Einstein deduced from his equations of special relativity what would later become the most famous expression in all of science: E=mc², suggesting that tiny amounts of mass could be converted into huge amounts of energy. (Einstein 1905e)

All four papers are today recognized as tremendous achievements—and hence 1905 is known as Einstein's "Wonderful Year". At the time, however, they were not noticed by most physicists as being important, and many of those who did notice them rejected them outright. Some of this work—such as the theory of light quanta—would remain controversial for years.[20] (Pais 1982, pp. 382-386)

At the age of 26, having studied under Alfred Kleiner, Professor of Experimental Physics, Einstein was awarded a PhD by the University of Zurich. His dissertation was entitled "A new determination of molecular dimensions." (Einstein 1905b)

General relativity

See also: History of general relativity and Relativity priority dispute

In 1906, the patent office promoted Einstein to Technical Examiner Second Class, but he was not giving up on academia. In 1908, he became a privatdozent at the University of Bern (Pais 1982, p. 522). In 1910, he wrote a paper on critical opalescence that described the cumulative effect of light scattered by individual molecules in the atmosphere, i.e. why the sky is blue (Levenson 2005).

During 1909, Einstein published "Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung" ("The Development of Our Views on the Composition and Essence of Radiation"), on the quantization of light. In this and in an earlier 1909 paper, Einstein showed that Max Planck's energy quanta must have well-defined momenta and act in some respects as independent, point-like particles. This paper introduced the photon concept (although the term itself was introduced by Gilbert N. Lewis in 1926). Even more importantly, Einstein showed that light must be simultaneously a wave and a particle.[citation needed]

In 1911, Einstein became an associate professor at the University of Zurich. However, shortly afterward, he accepted a full professorship at the Charles University of Prague. While in Prague, Einstein published a paper about the effects of gravity on light, specifically the gravitational redshift and the gravitational deflection of light. The paper appealed to astronomers to find ways of detecting the deflection during a solar eclipse.[21] German astronomer Erwin Freundlich publicized Einstein's challenge to scientists around the world (Crelinsten 2006).

In 1912, Einstein returned to Switzerland to accept a professorship at his alma mater, the ETH. There he met mathematician Marcel Grossmann who introduced him to Riemannian geometry, and at the recommendation of Italian mathematician Tullio Levi-Civita, Einstein began exploring the usefulness of general covariance (essentially the use of tensors) for his gravitational theory. Although for a while Einstein thought that there were problems with that approach, he later returned to it and by late 1915 had published his general theory of relativity in the form that is still used today (Einstein 1915).

After many relocations, Mileva established a permanent home with the children in Zurich in 1914, just before the start of World War I. Einstein continued on alone to Germany, more precisely to Berlin, where he became a member of the Preußische Akademie der Wissenschaften. As part of the arrangements for his new position, he also became a professor at the University of Berlin, although with a special clause freeing him from most teaching obligations. From 1914 to 1932 he was also director of the Kaiser Wilhelm Institute for physics (Kant 2005).

During World War I, the speeches and writings of Central Powers scientists were only available to Central Powers academics for national security reasons. Some of Einstein's work did reach the United Kingdom and the USA through the efforts of the Austrian Paul Ehrenfest and physicists in the Netherlands, especially 1902 Nobel Prize-winner Hendrik Lorentz and Willem de Sitter of the Leiden University. After the war ended, Einstein maintained his relationship with the Leiden University, accepting a contract as a buitengewoon hoogleraar; he travelled to Holland regularly to lecture there between 1920 and 1946.[citation needed]

In 1917, Einstein published an article in Physikalische Zeitschrift that proposed the possibility of stimulated emission, the physical technique that makes possible the laser (Einstein 1917b). He also published a paper introducing a new notion, a cosmological constant, into the general theory of relativity in an attempt to model the behavior of the entire universe (Einstein 1917a).

1917 was the year astronomers began taking Einstein up on his 1911 challenge from Prague. The Mount Wilson Observatory in California, USA, published a solar spectroscopic analysis that showed no gravitational redshift (Crelinsten 2006, pp. 103-108). In 1918, the Lick Observatory, also in California, announced that they too had disproven Einstein's prediction, although their findings were not published (Crelinsten 2006, pp. 114–119, 126–140).

One of the 1919 eclipse photographs taken during Arthur Eddington's expedition, which confirmed Einstein's predictions of the gravitational bending of light.
One of the 1919 eclipse photographs taken during Arthur Eddington's expedition, which confirmed Einstein's predictions of the gravitational bending of light.

However, in May of 1919, a team led by British astronomer Arthur Eddington claimed to have confirmed Einstein's prediction of gravitational deflection of starlight by the Sun while photographing a solar eclipse in Brazil and Principe (Crelinsten 2006). On November 7, 1919, leading British newspaper The Times printed a banner headline that read: "Revolution in Science – New Theory of the Universe – Newtonian Ideas Overthrown".[22] In an interview Nobel laureate Max Born praised general relativity as the "greatest feat of human thinking about nature";[23] fellow laureate Paul Dirac was quoted saying it was "probably the greatest scientific discovery ever made" (Schmidhuber 2006).

In their excitement, the world media made Albert Einstein world-famous. Ironically, later examination of the photographs taken on the Eddington expedition showed that the experimental uncertainty was of about the same magnitude as the effect Eddington claimed to have demonstrated, and in 1962 a British expedition concluded that the method used was inherently unreliable.[22] The deflection of light during an eclipse has, however, been more accurately measured (and confirmed) by later observations.[citation needed]

There was some resentment toward the newcomer Einstein's fame in the scientific community, notably among German physicists, who would later start the Deutsche Physik (German Physics) movement (Hentschel & Hentschel 1996, p. xxi).[24]

Having lived apart for five years, Einstein and Mileva divorced on February 14, 1919. On June 2 of that year, Einstein married Elsa Löwenthal, who had nursed him through an illness. Elsa was Albert's first cousin (maternally) and his second cousin (paternally). Together the Einsteins raised Margot and Ilse, Elsa's daughters from her first marriage.[citation needed]

The Nobel Prize

Einstein, 1921
Einstein, 1921

In 1921, Einstein was awarded the Nobel Prize in Physics, "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect". This refers to his 1905 paper on the photoelectric effect: "On a Heuristic Viewpoint Concerning the Production and Transformation of Light", which was well supported by the experimental evidence by that time. The presentation speech began by mentioning "his theory of relativity [which had] been the subject of lively debate in philosophical circles [and] also has astrophysical implications which are being rigorously examined at the present time." (Einstein 1923)

Einstein travelled to New York City in the United States for the first time on April 2, 1921. When asked where he got his scientific ideas, Einstein explained that he believed scientific work best proceeds from an examination of physical reality and a search for underlying axioms, with consistent explanations that apply in all instances and avoid contradicting each other. He also recommended theories with visualizable results (Einstein 1954).[25]

See also: History of special relativity
Max Planck presents Einstein with the Max-Planck medal, Berlin June 28 1929
Max Planck presents Einstein with the Max-Planck medal, Berlin June 28 1929

Unified field theory

Einstein's research after general relativity consisted primarily of a long series of attempts to generalize his theory of gravitation in order to unify and simplify the fundamental laws of physics, particularly gravitation and electromagnetism. In 1950, he described this "Unified Field Theory" in a Scientific American article entitled "On the Generalized Theory of Gravitation" (Einstein 1950).

Although he continued to be lauded for his work in theoretical physics, Einstein became increasingly isolated in his research, and his attempts were ultimately unsuccessful. In his pursuit of a unification of the fundamental forces, he ignored mainstream developments in physics (and vice versa), most notably the strong and weak nuclear forces, which were not well understood until many years after Einstein's death.[citation needed] Einstein's goal of unifying the laws of physics under a single model survives in the current drive for the grand unification theory.

Collaboration and conflict

Bose–Einstein statistics

In 1924, Einstein received a statistical model from Indian physicist Satyendra Nath Bose which showed that light could be understood as a gas. Bose's statistics applied to some atoms as well as to the proposed light particles, and Einstein published an article in the Zeitschrift für Physik describing Bose's model and its implications, among them the Bose–Einstein condensate phenomenon that should appear at very low temperatures.[citation needed] It wasn't until 1995 that the first such condensate was produced experimentally by Eric Cornell and Carl Wieman using ultra-cooling equipment built at the NIST-JILA laboratory at the University of Colorado at Boulder.[citation needed] Bose–Einstein statistics are now used to describe the behaviors of any assembly of "bosons".[citation needed] Einstein's sketches for this project may be seen in the Einstein Archive in the library of the Leiden University (Instituut-Lorentz 2005).

Boltzmann distribution

Einstein worked with Erwin Schrödinger on a refinement of the Boltzmann distribution, a mixed classical and quantum mechanical gas model, although he declined to have his name included on the paper.[citation needed]

The Einstein refrigerator

In 1926, Einstein and his former student Leó Szilárd, a Hungarian physicist who later worked on the Manhattan Project and is credited with the discovery of the chain reaction, co-invented (and in 1930, patented) the Einstein refrigerator, revolutionary for having no moving parts and using only heat, not ice, as an input (Goettling 1998).[26]

Einstein and Niels Bohr. Photo taken by Paul Ehrenfest during their visit to Leiden in December 1925.
Einstein and Niels Bohr. Photo taken by Paul Ehrenfest during their visit to Leiden in December 1925.

Bohr v. Einstein

See also: Bohr-Einstein debates

As quantum theory extended to quantum mechanics, Einstein began to object to the Copenhagen Interpretation developed by physicists Niels Bohr and Werner Heisenberg. The public debate between Einstein and Bohr lasted for years. In a 1926 letter to Max Born, Einstein wrote: "I, at any rate, am convinced that He does not throw dice." (Einstein 1969)[27] Bohr told Born to tell Einstein: "Stop telling God what to do."[citation needed]

Einstein's disagreement with Bohr revolved around scientific determinism. Although Bohr rebutted all of Einstein's specific arguments against the prevailing interpretation of quantum theory, Einstein was never satisfied by its intrinsically incomplete description of nature. In 1935, he collaborated with Boris Podolsky and Nathan Rosen on further exploration of his concerns, which became known as the EPR paradox.[citation needed]

Religious views

The question of scientific determinism gave rise to questions about Einstein's position on theological determinism, and even whether or not he believed in God. In 1929, Einstein told Rabbi Herbert S. Goldstein "I believe in Spinoza's God, who reveals Himself in the lawful harmony of the world, not in a God Who concerns Himself with the fate and the doings of mankind."(Brian 1996, p. 127)

By his own definition, Einstein was a deeply religious person (Pais 1982, p. 319).[28] He published a paper in Nature in 1940 entitled Science and Religion which gave his views on the subject.[29] In this he says that: "a person who is religiously enlightened appears to me to be one who has, to the best of his ability, liberated himself from the fetters of his selfish desires and is preoccupied with thoughts, feelings and aspirations to which he clings because of their super-personal value ... regardless of whether any attempt is made to unite this content with a Divine Being, for otherwise it would not be possible to count Buddha and Spinoza as religious personalities. Accordingly a religious person is devout in the sense that he has no doubt of the significance of those super-personal objects and goals which neither require nor are capable of rational foundation...In this sense religion is the age-old endeavour of mankind to become clearly and completely conscious of these values and goals, and constantly to strengthen their effects." He argues that conflicts between science and religion "have all sprung from fatal errors." However "even though the realms of religion and science in themselves are clearly marked off from each other" there are "strong reciprocal relationships and dependencies"... "science without religion is lame, religion without science is blind ...a legitimate conflict between science and religion cannot exist." However he makes it clear that he does not believe in a personal God, and suggests that "neither the rule of human nor Divine Will exists as an independent cause of natural events. To be sure, the doctrine of a personal God interfering with natural events could never be refuted...by science, for [it] can always take refuge in those domains in which scientific knowledge has not yet been able to set foot." (Einstein 1940, pp. 605-607)

The most thorough exploration of Einstein's views on religion was made by his friend Max Jammer in the 1999 book Einstein and Religion.(Jammer 1999)

Einstein was an Honorary Associate of the Rationalist Press Association beginning in 1934, and was an admirer of Ethical Culture (Ericson 2006). He served on the advisory board of the First Humanist Society of New York (See Stringer-Hye 1999 and Wilson 1995).

Dangerous politics

Indian poet and Nobel laureate Rabindranath Tagore with Einstein during their widely-publicized July 14, 1930 conversation.
Indian poet and Nobel laureate Rabindranath Tagore with Einstein during their widely-publicized July 14, 1930 conversation.

With increasing public demands, his involvement in political, humanitarian and academic projects in various countries and his new acquaintances with scholars and political figures from around the world, Einstein was less able to get the productive isolation that, according to biographer Ronald W. Clark, he needed in order to work (Clark 1971). As "the smartest man alive"[citation needed] Einstein found himself called on, like Solomon, to give conclusive judgments on matters that had nothing to do with theoretical physics or mathematics. He was not a timid man, and he was a man who was aware of the world around him, with no illusion that ignoring politics would make world events fade away. His very visible position allowed him to speak and write frankly, even provocatively, at a time when many people of conscience could only flee to the underground or keep doubts about developments within their own movements to themselves for fear of internecine fighting. Einstein flouted the ascendant Nazi movement, tried to be a voice of moderation in the tumultuous formation of the State of Israel and braved anti-communist politics and resistance to the civil rights movement in the United States.

Nazism

Albert Einstein wearing a kippah and holding a violin during a service in a Berlin Synagogue, 1930
Albert Einstein wearing a kippah and holding a violin during a service in a Berlin Synagogue, 1930

Einstein was a cultural zionist. Einstein was a co-founder of the liberal German Democratic Party.[citation needed] In 1931, The Macmillan Company published About Zionism: Speeches and Lectures by Professor Albert Einstein.[30] Querido Ferlag, an Amsterdam publishing house, collected eleven of Einstein's essays into a 1933 book entitled Mein Weltbild, translated to English as The World as I See It; Einstein's forward dedicates the collection "to the Jews of Germany".[31] In the face of Germany's rising militarism Einstein wrote and spoke for peace (American Museum of Natural History 2002).[32]

In January of 1933, Adolf Hitler was elected Chancellor of Germany. One of the first actions of Hitler's administration was the "Gesetz zur Wiederherstellung des Berufsbeamtentums" (the Law for the Restoration of the Professional Civil Service) which removed Jews and politically suspect government employees (including university professors) from their jobs, unless they had demonstrated their loyalty to Germany by serving in World War I. In December of 1932, Einstein had prudently travelled to the USA to become a guest lecturer at Abraham Flexner's newly founded Institute for Advanced Study in Princeton, New Jersey. Einstein once again renounced his German citizenship and applied for permanent residency in the United States.[citation needed]

Albert Einstein receiving his certificate of American citizenship from Judge Phillip Forman.
Albert Einstein receiving his certificate of American citizenship from Judge Phillip Forman.

The U.S. was not entirely a safe haven for Einstein, however. The Federal Bureau of Investigation's file on him grew to 1,427 pages. Many of the documents in the file were sent to the FBI by concerned citizens, some objecting to his immigration and others asking the FBI to protect him (Federal Bureau of Investigation 2005). Einstein became an American citizen in 1940 although he retained Swiss citizenship.[citation needed]

The Einstein family bought a house in Princeton (where Elsa died in 1936), and Einstein remained an integral contributor to the Institute for Advanced Study until his death in 1955. During the 1930s and into World War II, Einstein wrote affidavits recommending United States visas for a huge number of Europeans, raised money for Zionist organizations and was in part responsible for the formation, in 1933, of the International Rescue Committee (Princeton Online 1995).[33]

Meanwhile, a campaign to eliminate Einstein's work from the German lexicon as unacceptable "Jewish physics" was led by Nobel laureates Philipp Lenard and Johannes Stark.[citation needed] Deutsche Physik activists published pamphlets and even textbooks denigrating Einstein; instructors who taught his theories were blacklisted, including Nobel laureate Werner Heisenberg who had debated quantum probability with Bohr and Einstein. Einstein's scientific papers were among those destroyed in public book burnings on May 10, 1933.[citation needed]

In 1946 Einstein and Leó Szilárd recreate the writing of their 1939 letter to President Roosevelt.
In 1946 Einstein and Leó Szilárd recreate the writing of their 1939 letter to President Roosevelt.

In 1939, Leo Szilárd and Einstein wrote a letter to U.S. President Franklin Delano Roosevelt warning that the Third Reich might be developing nuclear weapons based on their own research. Roosevelt formed a committee to investigate the matter and granted Enrico Fermi's University of Chicago neutron experiments $6,000, the first steps toward the Manhattan Project.[citation needed] According to chemist and author Linus Pauling, Einstein later expressed regret about the Szilárd-Einstein letter.[34] Within five years, the United States created its own nuclear weapons, but used them on the Japanese cities of Nagasaki and Hiroshima.

Zionism

Albert Einstein seen here with his wife Elsa Einstein and Zionist leaders, including future President of Israel Chaim Weizmann, his wife Dr. Vera Weizmann, Menachem Ussishkin and Ben-Zion Mossinson on arrival in New York City in 1921.
Albert Einstein seen here with his wife Elsa Einstein and Zionist leaders, including future President of Israel Chaim Weizmann, his wife Dr. Vera Weizmann, Menachem Ussishkin and Ben-Zion Mossinson on arrival in New York City in 1921.

Despite his years of Zionist efforts, Einstein publicly stated reservations about the proposal to partition the British-supervised British Mandate of Palestine into independent Arab and Jewish countries. In a 1938 speech, "Our Debt to Zionism", he said: "I am afraid of the inner damage Judaism will sustain - especially from the development of a narrow nationalism within our own ranks, against which we have already had to fight strongly, even without a Jewish state." (Rowe & Schulmann 2007) The United Nations did divide the mandate, demarcating the borders of several new countries including the State of Israel, and war broke out immediately. Einstein was one of the authors of a 1948 letter to the New York Times criticizing Menachem Begin's Revisionist Herut (Freedom) Party for the Deir Yassin massacre (Einstein et al. 1948). Einstein served on the Board of Governors of The Hebrew University of Jerusalem, built in 1918. The Board had also included psychologist Sigmund Freud and philosopher Martin Buber, as well as chemist Chaim Weizmann who became the first President of Israel.[citation needed] In his Will of 1950, Einstein bequeathed literary rights to his writings to The Hebrew University, where many of his original documents are held in the Albert Einstein Archives (Albert Einstein Archives 2007).

When President Weizmann died in 1952, Einstein was asked to be Israel's second president but he declined . He wrote: "I am deeply moved by the offer from our State of Israel, and at once saddened and ashamed that I cannot accept it." (Princeton Online 1995)

Cold War era

Einstein and Solomon Mikhoels, the chairman of the Soviet Jewish Anti-Fascist Committee, in 1943.
Einstein and Solomon Mikhoels, the chairman of the Soviet Jewish Anti-Fascist Committee, in 1943.

When he was a visible figure working against the rise of Nazism, Einstein had sought help and developed working relationships in both the West and what was to become the Soviet bloc. After World War II, enmity between the former allies became a very serious issue for people with international resumes. To make things worse, during the first days of McCarthyism Einstein was writing about a single world government; it was at this time that he wrote, "I do not know how the third World War will be fought, but I can tell you what the they will use in the Fourth–rocks!" (Calaprice 2005, p. 173)[35] In a 1949 Monthly Review article entitled "Why Socialism?" Albert Einstein described a chaotic capitalist society, a source of evil to be overcome, as the "predatory phase of human development" (Einstein 1949). With Albert Schweitzer and Bertrand Russell, Einstein lobbied to stop nuclear testing and future bombs. Days before his death, Einstein signed the Russell-Einstein Manifesto, which led to the Pugwash Conferences on Science and World Affairs.[citation needed]

Einstein has been quoted as saying "Racism is America's greatest disease."[citation needed] Einstein was a member of several civil rights groups, including the Princeton chapter of the NAACP. He served as co-chair with Paul Robeson of the American Crusade to End Lynching. When the aged W.E.B. DuBois was accused of being a communist spy, Einstein volunteered as a character witness and the case was dismissed shortly afterward. Einstein's friendship with activist Paul Robeson lasted more than 20 years[citation needed].

In 1946, Einstein collaborated with Rabbi Israel Goldstein, Middlesex heir C. Ruggles Smith, and activist attorney George Alpert on the Albert Einstein Foundation for Higher Learning, Inc., which was formed to create a Jewish-sponsored secular university, open to all students, on the grounds of the former Middlesex College in Waltham, Massachusetts. Middlesex was chosen in part because it was accessible from both Boston and New York City, Jewish cultural centers of the USA. Their vision was a university "deeply conscious both of the Hebraic tradition of Torah looking upon culture as a birthright, and of the American ideal of an educated democracy." (Reis 1998) The collaboration was stormy, however. Finally, when Einstein wanted to appoint British economist Harold J. Laski as the university's president, Alpert wrote that Laski was "a man utterly alien to American principles of democracy, tarred with the Communist brush." (Reis 1998) Einstein withdrew his support and barred the use of his name (New York Times 1947). The university opened in 1948 as Brandeis University. In 1953, Brandeis offered Einstein an honorary degree, but he declined (Reis 1998).

Death

Albert Einstein laughing with Israeli diplomat, Abba Eban (left), 1952
Albert Einstein laughing with Israeli diplomat, Abba Eban (left), 1952

On April 17, 1955, Albert Einstein experienced internal bleeding caused by the rupture of an aortic aneurism.[citation needed] He took a draft of a speech he was preparing for a television appearance commemorating the State of Israel's seventh anniversary with him to the hospital, but he did not live long enough to complete it. (Albert Einstein Archives 1955) He died in Princeton Hospital early the next morning at the age of 76, leaving his generalized theory of gravitation incomplete. Einstein's remains were cremated and his ashes were scattered (O'Connor & Robertson 1997).

Before the cremation, Princeton Hospital pathologist Thomas Stoltz Harvey removed Einstein's brain for preservation, in hope that the neuroscience of the future would be able to discover what made Einstein so intelligent.

See also: Albert Einstein's brain

While travelling, Einstein had written daily to his wife Elsa and adopted stepdaughters, Margot and Ilse, and the letters were included in the papers bequeathed to The Hebrew University. Margot Einstein permitted the personal letters to be made available to the public, but requested that it not be done until twenty years after her death. Barbara Wolff, of the The Hebrew University's Albert Einstein Archives, told the BBC that there are about 3,500 pages of private correspondence written between 1912 and 1955 (BBC 2006).

The United States' National Academy of Sciences commissioned the Albert Einstein Memorial, a monumental bronze and marble sculpture by Robert Berks, erected at its Washington, D.C. campus adjacent to the National Mall.[citation needed]

Einstein bequeathed the royalties from use of his image to The Hebrew University of Jerusalem. The Roger Richman Agency licences the use of his name and associated imagery, as agent for the Hebrew University. (Roger Richman Agency 2007)

Honors

A 5 Israeli pound note from 1968 with the portrait of Einstein.
A 5 Israeli pound note from 1968 with the portrait of Einstein.
Albert Einstein, Person of the Century
Albert Einstein, Person of the Century

In 1999, Albert Einstein was named "Person of the Century" by Time magazine (Golden 2000), the Gallup Poll recorded him as the fourth most admired person of the 20th century[citation needed] and according to The 100: A Ranking of the Most Influential Persons in History, Einstein is "the greatest scientist of the twentieth century and one of the supreme intellects of all time" (Hart 1978).

A partial list of his memorials:

See also: List of things named after Einstein

Einstein in popular culture

Albert Einstein, 1951. Arthur Sasse, photographer
Albert Einstein, 1951. Arthur Sasse, photographer

On Einstein's 72nd birthday in 1951, UPI photographer Arthur Sasse was trying to persuade him to smile for the camera, but having smiled for photographers many times that day, Einstein stuck out his tongue instead (Kupper 2000).

Australian film maker Yahoo Serious used the birthday photograph as inspiration for his movie Young Einstein,[citation needed] indeed, Albert Einstein has been the subject of or inspiration for many novels, films and plays. For a sample of them, see Jean-Claude Carrier's 2005 French novel, Einstein S'il Vous Plait ("Please, Mr Einstein"), Nicolas Roeg's film Insignificance, Fred Schepisi's film I.Q. (where he was portrayed by Walter Matthau), Alan Lightman's collection of short stories Einstein's Dreams, and Steve Martin's comedic play Picasso at the Lapin Agile. He was the subject of Philip Glass's groundbreaking 1976 opera Einstein on the Beach and his humorous side is the subject of Ed Metzger's one-man play Albert Einstein: The Practical Bohemian.

Einstein is a favorite model for depictions of mad scientists and absent-minded professors; his expressive face and distinctive hairstyle have been widely copied and exaggerated. Time magazine's Frederic Golden wrote that Einstein was "a cartoonist's dream come true." (Golden 2000)

See also

Notes

  1. ^ Nobel Foundation. The Nobel Prize in Physics 1921. Retrieved on March 6, 2007.
  2. ^ Nobel Foundation. Albert Einstein - Biography. from Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967. Retrieved on March 7, 2007.
  3. ^ Thomas Sowell used Einstein's name for a book on such children. Sowell, Thomas (2001). The Einstein Syndrome: Bright Children Who Talk Late. Basic Books, 89-150. ISBN 0-465-08140-1. 
  4. ^ Schilpp (Ed.), P. A. (1979). Albert Einstein - Autobiographical Notes. Open Court, 8-9. 
  5. ^ a b Dudley Herschbach, "Einstein as a Student," Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA, page 3, web: HarvardChem-Einstein-PDF: about Max Talmud visited on Thursdays for 6 years.
  6. ^ Mehra, Jagdish. Albert Einstein's first paper. Retrieved on March 4, 2007.
  7. ^ Ibid.
  8. ^ Einstein's nationalities at einstein-website.de. Retrieved on 4 October, 2006.
  9. ^ Einstein's wife. Retrieved on 8 October, 2006.
  10. ^ This conclusion is from Einstein's correspondence with Mileva. Lieserl is first mentioned in a letter from Einstein to Marić (who was abroad at the time of Lieserl's birth) dated February 4, 1902 (Collected papers Vol. 1, document 134).
  11. ^ Now the Swiss Federal Institute of Intellectual Property. Retrieved on 16 October, 2006.. See also their FAQ about Einstein and the Institute.
  12. ^ a b Peter Galison, "Einstein's Clocks: The Question of Time" Critical Inquiry 26, no. 2 (Winter 2000): 355–389.
  13. ^ a b Galison, Peter (2003). Einstein's Clocks, Poincaré's Maps: Empires of Time. New York: W.W. Norton. ISBN 0393020010. 
  14. ^ See, for example, the discussion in the "Moonlighting in the Patent Office" section of Gary F. Moring, The Complete Idiot's Guide to Understanding Einstein (Alpha Books, 2004): 7.
  15. ^ E.g. (Pais 1982, p. 17)
  16. ^ Letter Einstein to Marić on October 3, 1900 (Collected Papers Vol. 1, document 79).
  17. ^ Alberto A Martínez. Arguing about Einstein's wife (April 2004) - Physics World - PhysicsWeb (See above). Retrieved on 21 November, 2005.
  18. ^ Allen Esterson. Mileva Marić: Einstein’s Wife. Retrieved on February 23, 2007.
  19. ^ John Stachel. “Albert Einstein and Mileva Maric. A Collaboration That Failed to Develop” in: Creative Couples in the Sciences, H. M. Pycior et al. (ed). Retrieved on February 23, 2007.
  20. ^ On the reception of relativity theory around the world, and the different controversies it encountered, see the articles in Thomas F. Glick, ed., The Comparative Reception of Relativity (Kluwer Academic Publishers, 1987), ISBN 9027724989.
  21. ^ Einstein, Albert (1911). "On the Influence of Gravity on the Propagation of Light". Annalen der Physik 35: 898-908.  (also in Collected Papers Vol. 3, document 23)
  22. ^ a b Andrzej, Stasiak (2003). "Myths in science". EMBO reports 4 (3): 236. DOI:10.1038/sj.embor.embor779. Retrieved on 2007-03-31. 
  23. ^ "The genius of space and time", The Guardian, September 17, 2005. Retrieved on March 31, 2007.
  24. ^ For a discussion of astronomers' attitudes and debates about relativity, see Jeffrey Crelinsten, Einstein's Jury: The Race to Test Relativity (Princeton University Press, 2006), esp. chapters 6, 9, 10 and 11.
  25. ^ See Albert Einstein, "Geometry and Experience," (1921), reprinted in Ideas and Opinions.
  26. ^ On November 11, 1930, U.S. Patent 1,781,541  was awarded to Albert Einstein and Leó Szilárd for the refrigerator.
  27. ^ A reprint of this book was published by Edition Erbrich in 1982, ISBN 388682005X
  28. ^ Commenting on the quotes from the Nature paper, Pais says "By his own definition, Einstein himself was, of course, a deeply religious person". c/f the title of Ch 2 of The God Delusion "A Deeply Religious non-believer"
  29. ^ Nature 146:605-607 Einstein, A. Science and religion
  30. ^ ASIN: B00085M906
  31. ^ As of March '07, Ebay item number 320089472053 for an original, also available in reprint paperback from Filiquarian Publishing, LLC, ISBN 1599869659.
  32. ^ See the AMNH site's popup of translated letter from Freud, in the section "Freud and Einstein", regarding proposed joint presentation on "What can be done to rid mankind of the menace of war?"
  33. ^ The International Rescue Committee, to this day, gives support and shelter to refugees of social and political persecution: See http://www.theirc.org/ for more information.
  34. ^ "Scientist Tells of Einstein's A-bomb Regrets". The Philadelphia Bulletin, 13 May 1955.
  35. ^ Other versions of the quote exist.

References

By Albert Einstein

  • Einstein, Albert (1901), "Folgerungen aus den Capillaritätserscheinungen (Conclusions Drawn from the Phenomena of Capillarity)", Annalen der Physik 4: 513
  • Einstein, Albert (1905a), "On a Heuristic Viewpoint Concerning the Production and Transformation of Light", Annalen der Physik 17: 132-148. This annus mirabilis paper on the photoelectric effect was received by Annalen der Physik March 18.
  • Einstein, Albert (1905b), A new determination of molecular dimensions. This PhD thesis was completed April 30 and submitted July 20.
  • Einstein, Albert (1905c), "On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid", Annalen der Physik 17: 549-560. This annus mirabilis paper on Brownian motion was received May 11.
  • Einstein, Albert (1905d), "On the Electrodynamics of Moving Bodies", Annalen der Physik 17: 891-921. This annus mirabilis paper on special relativity received June 30.
  • Einstein, Albert (1905e), "Does the Inertia of a Body Depend Upon Its Energy Content?", Annalen der Physik 18: 639-641. This annus mirabilis paper on mass-energy equivalence was received September 27.
  • Einstein, Albert (1915), "Die Feldgleichungen der Gravitation (The Field Equations of Gravitation)", Koniglich Preussische Akademie der Wissenschaften: 844-847
  • Einstein, Albert (1917a), "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie (Cosmological Considerations in the General Theory of Relativity)", Koniglich Preussische Akademie der Wissenschaften
  • Einstein, Albert (1917b), "Zur Quantentheorie der Strahlung (On the Quantum Mechanics of Radiation)", Physikalische Zeitschrift 18: 121–128
  • Einstein, Albert (July 11, 1923), "Fundamental Ideas and Problems of the Theory of Relativity", Nobel Lectures, Physics 1901-1921, Amsterdam: Elsevier Publishing Company [link accessed 2007-03-25] Nobel lecture
  • Einstein, Albert, et al. (December 4, 1948), "To the editors", New York Times
  • Einstein, Albert (May 1949), "Why Socialism?", Monthly Review
  • Einstein, Albert (1950), "On the Generalized Theory of Gravitation", Scientific American CLXXXII (4): 13-17
  • Einstein, Albert (1940), "On Science and Religion", Nature 146
  • Einstein, Albert (1954), Ideas and Opinions, New York: Random House, ISBN 0-517-00393-7
  • Einstein, Albert (1969), Albert Einstein, Hedwig und Max Born: Briefwechsel 1916-1955, Nymphenburger Verlagshandlung
  • Collected Papers: Stachel, John, Martin J. Klein, a. J. Kox, Michel Janssen, R. Schulmann, Diana Komos Buchwald and others (Eds.) (1987-2006). The Collected Papers of Albert Einstein, Vol 1-10. Princeton University Press.  Further information about the volumes published so far can be found on the webpages of the Einstein Papers Project.

About Albert Einstein

External links

Find more information on Albert Einstein by searching Wikipedia's sister projects
 Dictionary definitions from Wiktionary
 Textbooks from Wikibooks
 Quotations from Wikiquote
 Source texts from Wikisource
 Images and media from Commons
 News stories from Wikinews
 Learning resources from Wikiversity
Academic Genealogy
Notable teachers Notable students
Alfred Kleiner Hans Tanner


Persondata
NAME Einstein, Albert
ALTERNATIVE NAMES
SHORT DESCRIPTION Physicist
DATE OF BIRTH March 14, 1879
PLACE OF BIRTH Ulm, Baden-Württemberg, German Empire
DATE OF DEATH April 18, 1955
PLACE OF DEATH Princeton, New Jersey