Image:Znam-2-3-11-23-31.svg
From Wikipedia, the free encyclopedia
Znam-2-3-11-23-31.svg (6KB, MIME type: image/svg+xml
)
[edit] Summary
Graphical demonstration that 1 = 1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/(2×3×11×23×31). Each row of squares has k squares of side length 1/k, for some k in the set {2,3,11,23,31,47058}; for instance the first row has two squares of side length 1/2. Thus, each row of squares has area 1/k, and all six rows together exactly cover a unit square. The bottom row, with 47058 squares of side length 1/47058, would be too small to see in the figure, and is not shown. Sets of integers such that , such as the set {2,3,11,23,31} used to construct this figure, correspond to solutions of Znám's problem. As all numbers in the set {2,3,11,23,31} are prime, their product 47058 is a primary pseudoperfect number.
[edit] Licensing
I, the creator of this work, hereby release it into the public domain. This applies worldwide.
In case this is not legally possible,
I grant any entity the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
File history
Legend: (cur) = this is the current file, (del) = delete
this old version, (rev) = revert to this old version.
Click on date to download the file or see the image uploaded on that date.
- (del) (cur) 01:51, 5 December 2006 . . David Eppstein (Talk | contribs) . . 256×256 (5,661 bytes) (Graphical demonstration that 1 = 1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/(2×3×11×23×31). Each row of squares has k squares of side length 1/k, for some k in the set {2,3,11,23,31,47058}; for instance the first row has two squares of sid)
- Edit this file using an external application
See the setup instructions for more information.