Wound healing

From Wikipedia, the free encyclopedia

Wound healing, or wound repair, is the body's natural process of regenerating dermal and epidermal tissue. When an individual is wounded, a set of events takes place in a predictable fashion to repair the damage. These events overlap in time and must be artificially categorized into separate steps: the inflammatory, proliferative, and maturation phases (Some authors consider healing to take place in four stages, by splitting different parts inflammation or proliferation into separate steps.)

In the inflammatory phase, bacteria and debris are phagocytized and removed and factors are released that cause the migration and division of cells involved in the proliferative phase.

The proliferative phase is characterized by angiogenesis, collagen deposition, granulation tissue formation, epithelialization, and wound contraction. In angiogenesis, new blood vessels grow from endothelial cells. In fibroplasia and granulation tissue formation, fibroblasts grow and form a new, provisional extracellular matrix (ECM) by excreting collagen and fibronectin. In epithelialization, epithelial cells crawl across the wound bed to cover it. In contraction, the wound is made smaller by the action of myofibroblasts, which establish a grip on the wound edges and contract themselves using a mechanism similar to that in smooth muscle cells. When the cells' roles are close to complete, unneeded cells undergo apoptosis.

In the maturation and remodeling phase, collagen is remodeled and realigned along tension lines and cells that are no longer needed are removed by apoptosis.

Contents

[edit] Inflammatory phase

In the inflammatory phase, clotting takes place in order to obtain hemostasis, or stop blood loss, and various factors are released to attract cells that phagocytise debris, bacteria, and damaged tissue and release factors that initiate the proliferative phase of wound healing.

[edit] Clotting cascade

When tissue is first wounded, blood comes in contact with collagen, triggering blood platelets to begin secreting inflammatory factors. Platelets also express glycoproteins on their cell membranes that allow them to stick to one another and to aggregate, forming a mass.

Fibrin and fibronectin cross-link together and form a plug that traps proteins and particles and prevents further blood loss. This fibrin-fibronectin plug is also the main structural support for the wound until collagen is deposited. Migratory cells use this plug as a matrix to crawl across, and platelets adhere to it and secrete factors. The clot is eventually lysed and replaced with granulation tissue and then later with collagen.

[edit] Platelets

Platelets, the cells present in the highest numbers shortly after wounding, release a number of factors into the blood, including ECM proteins and cytokines, including growth factors. Growth factors stimulate cells to speed their rate of division. Platelets also release other proinflammatory factors like serotonin, bradykinin, prostaglandins, prostacyclins, thromboxane, and histamine, which serve a number of purposes, including to increase cell proliferation and migration to the area and to cause blood vessels to become dilated and porous.

[edit] See also

[edit] External links

In other languages