Wardenclyffe Tower

From Wikipedia, the free encyclopedia

Wardenclyffe Tower located in Shoreham, Long Island, New York. The 94 ft. by 94 ft. brick building was designed by architect Stanford White. The tower structure was completed in 1904. The transceiver was never fully built due to economic problems.
Enlarge
Wardenclyffe Tower located in Shoreham, Long Island, New York. The 94 ft. by 94 ft. brick building was designed by architect Stanford White. The tower structure was completed in 1904. The transceiver was never fully built due to economic problems.

Nikola Tesla's Wardenclyffe Tower (1901 – 1917) also known as the Tesla Tower, was an early wireless aerial tower intended to demonstrate the ability to send and receive information and power without interconnecting wires. The core facility was never fully operational and was not completed due to economic problems.

The tower was named after James S. Warden, a western lawyer and banker who had purchased land in Shoreham, Long Island, about sixty miles from Manhattan. Here he built a resort community known as Wardenclyffe-On-Sound. Warden believed that with the implementation of Tesla's World System a "Radio City" would arise in the area, and offered Tesla 200 acres (81 hectares) of land close to a railway line on which to build his wireless telecommunications tower and laboratory facility.

Contents

[edit] History

Nikola Tesla began planning the Wardenclyffe Tower facility ca. 1898, and in 1901, construction began on the land near Long Island Sound. Architect Stanford White designed the Wardenclyffe facility main building. The tower was designed by W.D. Crow, an associate of White. Funding for Tesla's project was provided by influential industrialists and other venture capitalists. The project was initially backed by the wealthy J. P. Morgan (he had a substantial investment in the facility, initially investing $150,000).

In June 1902, Tesla moved his laboratory operations from his Houston Street laboratory to Wardenclyffe. However, in 1903, when the tower structure was near completion, it was still not yet functional due to last-minute design changes that introduced in an unintentional defect. When Morgan wanted to know "Where can I put the meter?", Tesla had no answer. Tesla's vision of free power did not agree with Morgan's worldview. Construction costs eventually exceeded the money provided by Morgan, and additional financiers were reluctant to come forth. By July 1904, Morgan (and the other investors) finally decided they would not provide any additional financing. Morgan also encouraged other investors to avoid the project. In May 1905, Tesla's patents on alternating current motors and other methods of power transmission expired, halting royalty payments and causing a severe reduction of funding to the Wardenclyffe Tower. In an attempt to find alternative funding, Tesla advertised the services of the Wardenclyffe facility, but he met with little success. By this time, Tesla had also designed the Tesla turbine at Wardenclyffe and produced Tesla coils for sale to various businesses.

By 1905, since Tesla could not find any more backers, most of the site's activity had to be shut down. The main hall continued to be used for blackface minstrel shows until October of that year. Employees were laid off in 1906, but parts of the building remained in use until 1907. In 1908, the property was foreclosed for the first time. Tesla procured a new mortgage from the proprietor of the Waldorf-Astoria Hotel, George C. Boldt. The facility was partially abandoned around 1911, the tower structure eventually becoming deteriorated. Between 1912 and 1915, Tesla's finances unraveled, and when the funders wanted to know how they were going to recapture their investments, Tesla was unable to give satisfactory answers. Newspaper headlines of the time labeled it "Tesla's million-dollar folly." The facility's main building was breached and vandalized around this time. Collapse of the Wardenclyffe project may have contributed to the mental breakdown Tesla experienced during this period. Coupled to the personal tragedy of Wardenclyffe was the earlier 1895 unexplained fire in Tesla's Houston Street laboratory. In this fire, he lost much of his equipment, notes and documents. This produced a state of severe depression for Tesla.

In 1915, legal ownership of the Wardenclyffe property was transferred to George Boldt for a $20,000 debt. Demolition (reportedly by the U.S. Govt [1]) and salvaging of the tower occurred in 1917. However, the main building remains standing to this day. Tesla was not in New York during the tower's destruction. George Boldt wished to make the property available for sale. New York papers reported that the tower had been destroyed by order of the government to prevent its use by foreign agents. In 1917, the United States government may have aided the destruction of the Wardenclyffe Tower, ostensibly because it was believed it could provide a navigational landmark for German submarines. Neither claim is known to have been substantiated. On April 20, 1922 Tesla lost an appeal of judgment versus his backers in the second foreclosure. This effectively locked Tesla out of any future development of the facility.

In 1925, the property ownership was transferred to Walter L. Johnson of Brooklyn. On March 6, 1939, Plantacres, Inc. purchased the facility's land and subsequently leased it to Peerless Photo Products, Inc. (which was subsequently bought out by AGFA Corporation, the current owner.). On February 14, 1967, the nonprofit public benefit corporation Brookhaven Town Historical Trust was established. It selected the Wardenclyffe facility to be designated as a historic site and as the first site to be preserved by the Trust on March 3, 1967. In the month of July in 1976, a plaque from Tesla's birth country, Yugoslavia, was installed by the Brookhaven Town Historic trust near the entrance of the facility. It reads:

IN THIS BUILDING DESIGNED BY STANFORD WHITE, ARCHITECT
NIKOLA TESLA
BORN SMILJAN, YUGOSLAVIA 1856, DIED NEW YORK, U.S.A. 1943
CONSTRUCTED IN 1901-1905 WARDENCLYFFE, HUGE RADIO STATION WITH
ANTENNA TOWER 187 FT. HIGH (DESTROYED 1917), WHICH WAS TO SERVE
AS HIS FIRST WORLD COMMUNICATIONS SYSTEM.
IN MEMORY OF 120TH ANNIVERSARY OF TESLA'S BIRTH AND 200TH
ANNIVERSARY OF U.S.A. INDEPENDENCE - July 10, 1976

Also, in 1976, an application was filed to nominate the main building for listing listed on the National Register of Historic Places. It failed to get approval. In 1994, the campaign for placement of the Wardenclyffe facility on the National Register of Historic Places of New York was renewed. In October 1994 a second Application for formal nomination was filed. The New York State Office of Parks, Recreation and Historic Preservation conducted inspections and determined the facility meets New York State criteria for historic designation. The present owner of the existing Wardenclyffe facility is AGFA-Gevaert. The site is undergoing a final cleanup of waste produced during its Photo Products era. The clean up is being conducted under the scrutiny of the New York State Department of Environmental Conservation, and is being paid for by AGFA. The tower base is one of the areas where the clean up is under way.

[edit] Facility grounds

Wardenclyffe is located near the Shoreham Post Office and Shoreham Fire House on Route 25A in Shoreham, Long Island, New York. Wardenclyffe was divided into two main sections. The tower, which was located in the back, and the main building compose the entire facility grounds.

The tower was 187 feet (57 meters) tall and 68 feet (20.7 meters) in diameter. It had a supporting structure that was built of wood. It had a 55-ton steel (some report it was a better conducting material, such as copper) hemispherical structure at the top (referred to as a cupola). The tower was designed by one of Stanford White's associates. The design of this structure was such as to allow each piece to be taken out if needed and replaced as necessary. Beneath the tower, a shaft sank 120 feet (36.6 meters) into the ground. Sixteen iron pipes were placed one length after another 300 additional feet (94.4 meters) in order for the machine, in Tesla's words, "to have a grip on the earth so the whole of this globe can quiver." [2] At this depth, telluric currents of the Earth could be transceived.

The main building occupied the rest of the facility grounds. It included a laboratory area, instrument room, boiler room, generator room and machine shop. Inside the main building, there were electromechanical devices, electrical generators, electrical transformers, glass blowing equipment, X-ray devices, Tesla coils, a remote controlled boat, cases with bulbs and tubes, wires, cables, a library, and an office. It was constructed in the style of the Italian Renaissance.

[edit] Theories of operation

The Transmission of Radiant Energy

In 1891 and 1892, Tesla had used an oscillatory transformer that bears his name in demonstration lectures delivered before meetings of the American Institute of Electrical Engineers (AIEE) in New York City[3] and the Institute of Electrical Engineers (IEE) in London.[4] Two striking results that Tesla demonstrated showed that the wireless transmission of electrical energy was possible. A later presentation, titled "On Light and Other High Frequency Phenomena" (Philadelphia/St. Louis; Franklin Institute in 1893), was a key event in the invention of radio and could be said to have begun the development of Wardenclyffe.

One-Wire Transmission

In the early presentations, the first experiment to be demonstrated was the operation of light and motive devices connected by a single wire to only one terminal of a high frequency induction coil, presented during the 1891 New York City lecture at Columbia University. While a single terminal incandescent lamp connected to one of an induction coil’s secondary terminals does not form a closed circuit “in the ordinary acceptance of the term”, the circuit is closed in the sense that a return path is established back to the secondary by what Tesla called “electrostatic induction” (or 'displacement currents'). This is due to the fact that the lamp’s filament or refractory button has capacitance relative to the coil’s free terminal and environment and the secondary’s free terminal also has capacitance relative to the lamp and environment. At high frequencies, the displacement current required to charge these capacitances becomes sufficient to light the lamp.

Wireless Transmission

The second result demonstrated how energy could be made to go through space without any connecting wires. This was the first step towards a practical wireless system. The wireless energy transmission effect involved the creation of an electric field between two metal plates, each being connected to one terminal of an induction coil’s secondary winding. Once again, a light-producing device (in this case a gas discharge tube) was used as a means of detecting the presence of the transmitted energy. "The most striking result obtained" involved the lighting of two partially evacuated tubes in an alternating electrostatic field while held in the hand of the experimenter. In Tesla's words,

" ... I suspend a sheet of metal a distance from the ceiling on insulating cords and connect it to one terminal of the induction coil, the other terminal being preferably connected to the ground. Or else I suspend two sheets as illustrated in Fig. 29 / 125, each sheet being connected with one of the terminals of the coil, and their size being carefully determined. An exhausted tube may then be carried in the hand anywhere between the sheets or placed anywhere, even a certain distance beyond them; it remains always luminous." [5]

Here Tesla describes two different types of wireless transmitters, both employing a high-tension induction coil. The first, referred to here as the type-one transmitter, had a sheet of metal suspended from the ceiling and connected to one of the induction coil’s terminals. The other terminal was connected to ground. The second, referred to here as the type-two transmitter, had two sheets of metal suspended from the ceiling, each being connected with one of the coil’s terminals.

Theory of Wireless Transmission

While working to develop an explanation for the two observed effects mentioned above, Tesla recognized that electrical energy could be projected outward into space and detected by a receiving instrument in the general vicinity of the source without the need for any interconnecting wires. He went on to develop two theories related to these observations, which are:

  1. By using two type-one sources positioned at distant points on the earth’s surface, it is possible to induce a flow of electrical current between them.
  2. By incorporating a portion of the earth as part of a powerful type-two oscillator the disturbance can be impressed upon the earth and detected “at great distance, or even all over the surface of the globe.”[5]

Tesla also made the assumption that Earth is a charged body floating in space.

A point of great importance would be first to know what is the capacity of the earth? and what charge does it contain if electrified? Though we have no positive evidence of a charged body existing in space without other oppositely electrified bodies being near, there is a fair probability that the earth is such a body, for by whatever process it was separated from other bodies—and this is the accepted view of its origin—it must have retained a charge, as occurs in all processes of mechanical separation.[5]

Tesla was familiar with demonstrations that involved the charging of Leyden jar capacitors and isolated metal spheres with electrostatic influence machines. By bringing these elements into close proximity with each other, and also by making direct contact followed by their separation the charge can be manipulated. He surely had this in mind in the creation of his mental image, not being able to know that the model of Earth’s origin was inaccurate. The presently accepted model of planetary origin is one of accretion and collision.

If it be a charged body insulated in space its capacity should be extremely small, less than one-thousandth of a farad.[5]

We now know that the earth is, in fact, a charged body, made so by processes—at least in part—related to the interaction between the continuous stream of charged particles called the solar wind that flows outward from the center of our solar system and Earth’s magnetosphere. And we also know that Tesla's capacitance estimate was correct: the Earth's self-capacitance is known to be about 710 microfarads.

But the upper strata of the air are conducting, and so, perhaps, is the medium in free space beyond the atmosphere, and these may contain an opposite charge. Then the capacity might be incomparably greater.[5]

We now also know that one of the upper strata of Earth’s atmosphere, the ionosphere, is conducting.

In any case it is of the greatest importance to get an idea of what quantity of electricity the earth contains.[5]

An additional condition of which we are now aware is that the earth possesses a naturally existing negative charge with respect to the conducting region of the atmosphere beginning at an elevation of about 50 Km. The potential difference between the earth and this region is on the order of 400,000 volts. Near the earth's surface there is a ubiquitous downward directed E-field of about 100 V/m. Tesla referred to this charge as the “electric niveau” or electric level[6]

It is difficult to say whether we shall ever acquire this necessary knowledge, but there is hope that we may, and that is, by means of electrical resonance. If ever we can ascertain at what period the earth's charge, when disturbed, oscillates with respect to an oppositely electrified system or known circuit, we shall know a fact possibly of the greatest importance to the welfare of the human race. I propose to seek for the period by means of an electrical oscillator, or a source of alternating electric currents ... [7]

An alternate theory on how the 200 kW wireless facility worked claims that propagation was by means of electromagnetic radiation in the form of radio waves, also known as Hertzian radiation.

By Tesla's own account, his earth resonance system works by the creation of powerful disturbances in Earth's natural electric charge. According to his writings, the facility had a dual purpose. He had planned more than what was initially revealed to his investors. His station would not only transceive telecommunication signals, but also demonstrate the transmission of electrical power on a reduced scale. He stated,

It is intended to give practical demonstrations of these principles with the plant illustrated. As soon as completed, it will be possible for a business man in New York to dictate instructions, and have them instantly appear in type at his office in London or elsewhere. He will be able to call up, from his desk, and talk to any telephone subscriber on the globe, without any change whatever in the existing equipment. An inexpensive instrument, not bigger than a watch, will enable its bearer to hear anywhere, on sea or land, music or song, the speech of a political leader, the address of an eminent man of science, or the sermon of an eloquent clergyman, delivered in some other place, however distant. In the same manner any picture, character, drawing, or print can be transferred from one to another place. Millions of such instruments can be operated from but one plant of this kind. More important than all of this, however, will be the transmission of power, without wires, which will be shown on a scale large enough to carry conviction. [8]

In overall appearance, the system looks similar to a very large Tesla coil. Tesla's Magnifying Transmitter was the test of this facility (i.e., proof of concept). Tesla intended to use the facility to perform operations, "with the transmission of electrical energy for power and lighting purposes by wireless ...". [9] A second plant was to be constructed on the southern coast of England.

Among the Wardenclyffe plant's purposes were global wireless telecommunications and broadcasting. It would have allowed secure multichannel transmission and reception of information, universal time synchronization, and a global location, ranging, and navigation system. The plant primary function was trans-Atlantic wireless telecommunications and 'radio' broadcasting.

The installation was also used by Tesla as a laboratory for designing a power distribution system that would allow electricity to be transmitted over great distances without wires. This cannot be accomplished with what Tesla called "Hertz waves," which explains why Wardenclyffe was designed in a different manner than modern radio transmitters. Instead of distributing electricity through copper wire, remote users would be able to "receive" power through a buried ground connection, along with a spherical antenna terminal mounted just above their roof. At the time the power grid was quite limited in terms of who it reached and the Wardenclyffe prototype represented a way in which to significantly reduce the cost of "electrifying" the countryside. Tesla called his wireless technique the "disturbed charge of ground and air method". [10]

The prototype facility was also meant to serve as a reduced-scale model for a national (and later global) system of towers to transmit electrical energy to users in the form of earth currents and magnetohydrodynamic waves. There is evidence that Wardenclyffe would have used extremely low frequency signals combined with higher frequency signals. In practice, the transmitter electrically influences both the earth and the space above it. He made a point of describing the process as being essentially the same as transmitting electricity by conduction through a wire. Tesla stated that electrical energy can be efficiently transmitted back and forth between World System transmitter / receiver facilities via electrical conduction through the ground. To accommodate this plan each facility includes one or two elevated terminal connections and one or two ground terminal connections.

Tesla clearly specified the earth as being one of the conducting media involved in ground and air system technology. The other specified medium is the atmosphere above 5 miles elevation. While not an ohmic conductor, in this region of the troposphere and upwards, the density or pressure is sufficiently reduced to so that, according to Tesla’s theory, the atmosphere’s insulating properties can be easily impaired, allowing an electric current to flow. His theory further states that the conducting region is developed through the process of atmospheric ionization, in which the effected portions thereof are changed to plasma. The presence of the magnetic fields developed by each plant’s helical resonator suggests that an embedded magnetic field and flux linkage is also involved. Flux linkage with Earth’s natural magnetic field is also a possibility, especially in the case of an earth resonance transmission system.

The atmosphere below 5 miles is also viewed as a propagating medium for a portion of the above-ground circuit, and, being an insulating medium, electrostatic induction would be involved rather than true electrical conduction. Tesla felt that with a sufficiently high electrical potential on the elevated terminal the practical limitation imposed upon its height could be overcome. He anticipated that a highly energetic transmitter, as was intended at Wardenclyffe, would charge the elevated terminal to the point where the atmosphere around and above the facility would break down and become ionized, leading to a flow of true conduction currents between the two terminals by a path up to and through the troposphere, and back down to the other facility. The ionization of the atmosphere directly above the elevated terminals would be facilitated by the use of an ionizing beam of ultraviolet radiation to form what might be called a high-voltage plasma transmission line. [ed. see maxwellian waves and waves in plasmas] Powered by an industrial alternator, a generator facility's tower was intended to inject large amounts of energy into a natural Earth circuit, using the Earth-Ionosphere network as the transmission circuit.

In various writings, Tesla explained that the Earth itself behaves as a resonant LC circuit when it is electrically excited at certain frequencies. At Wardenclyffe he operated at frequencies ranging from 1,000 Hz to 100 kHz. Tesla found the frequency range up to 30 – 35 kHz, “to be most economical.” Excitation of earth resonance at or near a fundamental frequency (about 7.5 to 7.9 Hz), might suggest the utilization of what is now known as a Schumann resonance mode. The entire earth can be electrically resonated with a single type-two source, so an earth-resonance based system would require, at a minimum, that only one generating facility be constructed. Alternatively, two distantly spaced type-one generating facilities could be constructed. Such a system would not be so dependent upon the excitation of an earth-resonance mode. In either case a surface or ground wave, similar to the Zenneck wave would be utilized. Artificially induced earth currents would be utilized. According to Tesla, the planet's large cross-sectional area provides a low resistance path for the flow of earth currents. The greatest losses are apt to occur at the points where the transmitting / receiving plants and dedicated receiving stations are connected with the ground. This is why Tesla stated,

"You see the underground work is one of the most expensive parts of the tower. In this system that I have invented it is necessary for the machine to get a grip of the earth, otherwise it cannot shake the earth. It has to have a grip on the earth so that the whole of this globe can quiver, and to do that it is necessary to carry out a very expensive construction." [11]

To close the circuit a second path would be established between the two type-one plants' elevated high-voltage terminals through the rarified atmospheric strata above five miles. The connection would be made by some combination of electrostatic induction and electrical conduction through plasma. While a number of his wireless patents, including "Apparatus for transmitting electrical energy", U.S. Patent No. 1,119,732, Dec. 1, 1914, describe a system which uses the plasma-conduction scheme, his "Art of transmitting electrical energy through the natural mediums", U.S. Patent No. 787,412, Apr. 18, 1905 and some of his Wardenclyffe design notes from 1901 show that he also had a plan to electrostatically induce oscillations in the potential associated with Earth's self-capacitance by rapidly transferring large amounts of electrical charge between the large topload capacitance and the self-capacitance of the whole Earth. The type-two transmitter is especially designed for this purpose. Tesla wrote,

The specific plan of producing the stationary waves, here-in described, might be departed from. For example, the circuit which impresses the powerful oscillations upon the earth might be connected to the latter at two points. [12]

Tesla firmly believed that a fully developed system with generating stations based upon the Wardenclyffe prototype would permit wireless transmission and reception across large distances with negligible losses.

[edit] Tesla's ray

Related to the operation and utilization of Wardenclyffe Tower was Nikola Tesla's work on a macroscopic particle beam weapon in the 1930s. A Wardenclyffe styled facility which included the weapon was contemplated by Tesla. He offered it to Westinghouse Electric & Manufacturing Company in early 1934. It was also offered to the US War Department, Great Britain, and Yugoslavia. A descriptive 17-page type-written document on Tesla's office letterhead titled, "New Art of Projecting Concentrated Non-Dispersive Energy Through Natural Media," which presently exists in the Nikola Tesla Museum archive in Belgrade, shows that his macroscopic particle beam, also called the "Peace Ray" and "teleforce," was a narrow stream of charged clusters of mercury or tungsten accelerated by high voltage, produced by either a huge Van de Graaff generator or Tesla Coil. Immediately after his death, a component of the particle beam projector that may have been found among Tesla's possessions is said to have disappeared. Russian spies reportedly raided the room and the safe containing the schematics of the "death ray". The FBI never found any of the important parts of the schematics nor the trunk with the prototype, as far as existing public records show.[citation needed]

[edit] Wardenclyffe in popular culture

  • Wardenclyffe is not yet on the National Register of Historic Places, though applications have been made. Tesla's high-voltage lab at Wardenclyffe affected American architectural works, according to Thomas P. Hughes [1].
  • Atlantic 252 radio station's symbol resembled Wardenclyffe Tower when the station was still operating.
  • The design of Sunsphere in Knoxville was perhaps inspired by Wardenclyffe Tower.
  • The Tower was used on the front page of the website for The White Stripes.
  • Wardenclyffe Tower is also the name of a 1992 album by musician Allan Holdsworth.
  • Wardenclyffe is the name of an experimental rock and techno band from Chicago. [2]

[edit] Telefunken Station

After Wardenclyffe, Tesla built the Telefunken Wireless on the South Shore of Long Island. Some of what he wanted to achieve at Wardenclyffe was achieved with the Telefunken Wireless. In West Sayville, Long Island, New York, Tesla assisted in the building of three 600-foot radio towers, creating the western wireless communication station in a North America and Europe network.

[edit] Quotes

  • "As soon as [the Wardenclyffe facility is] completed, it will be possible for a business man in New York to dictate instructions, and have them instantly appear in type at his office in London or elsewhere. He will be able to call up, from his desk, and talk to any telephone subscriber on the globe, without any change whatever in the existing equipment. An inexpensive instrument, not bigger than a watch, will enable its bearer to hear anywhere, on sea or land, music or song, the speech of a political leader, the address of an eminent man of science, or the sermon of an eloquent clergyman, delivered in some other place, however distant. In the same manner any picture, character, drawing, or print can be transferred from one to another place ..." - Nikola Tesla, "The Future of the Wireless Art", Wireless Telegraphy and Telephony, 1908, pg. 67-71.
  • "It is not a dream, it is a simple feat of scientific electrical engineering, only expensive — blind, faint-hearted, doubting world! [...] Humanity is not yet sufficiently advanced to be willingly led by the discoverer's keen searching sense. But who knows? Perhaps it is better in this present world of ours that a revolutionary idea or invention instead of being helped and patted, be hampered and ill-treated in its adolescence — by want of means, by selfish interest, pedantry, stupidity and ignorance; that it be attacked and stifled; that it pass through bitter trials and tribulations, through the strife of commercial existence. So do we get our light. So all that was great in the past was ridiculed, condemned, combatted, suppressed — only to emerge all the more powerfully, all the more triumphantly from the struggle." – Nikola Tesla (at the end of his dream for Wardenclyffe) [Wardenclyffe — A Forfeited Dream]

[edit] See also

[edit] Related patents

Nikola Tesla's patents
See also: List of Tesla patents
Other patents

[edit] References

Citations
  1. ^ See http://earlyradiohistory.us/1917tes.htm (citing page 293 of the September, 1917 issue of The Electrical Experimenter): "SUSPECTING that German spies were using the big wireless tower erected at Shoreham, L. I., about twenty years ago by Nikola Tesla, the Federal Government ordered the tower destroyed and it was recently demolished with dynamite."
  2. ^ "Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony, and Transmission of Power", ISBN 1-893817-01-6, p. 203
  3. ^ “Experiments With Alternating Currents of Very High Frequency, and Their Application to Methods of Artificial Illumination, May 20, 1891”
  4. ^ “Experiments With Alternate Currents of High Potential and High Frequency, February 3, 1892”. Inventions, Researches and Writings of Nikola Tesla.
  5. ^ a b c d e f "Experiments With Alternating Currents of Very High Frequency, and Their Application to Methods of Artificial Illumination", May 20, 1891.
  6. ^ As noted by James Corum, et al in the paper "Concerning Cavity Q", Proceedings of the 1988 International Tesla Symposium. (ed. along with other sources)
  7. ^ On Light and Other High Frequency Phenomena, St. Louis, 1893
  8. ^ "The Future of the Wireless Art". Wirelesss Telegraphy and Telephony, Walter W. Massie & Charles R. Underhill, 1908, pp. 67-71
  9. ^ "U.S. Blows Up Tesla Radio Tower", The Electrical Experimenter, September, 1917, page 293.
  10. ^ Gary L. Peterson, "Rediscovering the Zenneck Surface Wave", Feed Line No. 4.
  11. ^ Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, p. 203
  12. ^ U.S. Patent No. 787,412, Apr. 18, 1905 and some of his Wardenclyffe design notes

[edit] Notes

[edit] External links and other articles

Newspapers
  • Rather, John, "Tesla, a Little-Recognized Genius, Left Mark in Shoreham". The New York Times. Long Island Weekly Desk.
Views of the facility
Web sites
Other publications
  • Bass, Robert W., "Self-Sustained Non-Hertzian Longitudal Wave Oscillations as a Rigorous Solution of Maxwell's Equations for Electromagnetic Radiation". Inventek Enterprises, Inc., Las Vegas, Nevada.
  • Tesla, Nikola, "On the Transmission of Electricity Without Wires". Electrical World and Engineer, March 5, 1904.
  • "Boundless Space: A Bus Bar". The Electrical World, Vol 32, No. 19.
  • Massie, Walter Wentworth, "Wireless telegraphy and telephony popularly explained ". New York, Van Nostrand. 1908.
  • Anderson, Leland, "Rare Notes from Tesla on Wardenclyffe", in Electric Spacecraft - A journal of Interactive Research, Issue 26, Sept 14, 1998. Contains copies of rare documents from the Tesla Museum in Belgrade including Tesla's notes and sketches from 1901
In other languages