War in the Age of Intelligent Machines

From Wikipedia, the free encyclopedia

War in the Age of Intelligent Machines (1991) is a book by Manuel de Landa which traces the history of warfare and of technology. It is influenced in part by Michel Foucault's Discipline and Punish (1978), and also reinterprets the concepts of war machines and machinic phylum, introduced in Deleuze and Guattari's A Thousand Plateaus (1980) — Deleuze & Guattari appreciated Foucault's definition of philosophy as a "tool box" which was to encourage into thinking new ideas. Thus, they prepared themselves the field for a reappropriation of their concepts, that is, a different use in another context of the "same" concept, which they also theorized under the name of "actualization". Manuel de Landa wisely take advantage of this liberty offered by these authors to draw on their concepts and investigate his field of studies with them: history of warfare and technologies.

Contents

[edit] A social history of technology and of warfare

An invention always need to be inserted in social practices to become an effective technological innovation. Deleuze and Guattari pointed out how the feudal assemblage was composed of three heterogeneous components: the stirrup, the lance and the knight [1]. Technology is thus inserted in social practices, creating the specific war machine of each social formation. "Tactical integration of new weapons has always been a lengthy process. Rifled firearms, for example, were available to hunters and duelists for over a century before they found their way into the war machine. The tactics of most European armies were based on the volume of fire delivered rather than on the accuracy of individual shots." (p.170) Manuel de Landa thus describes how social and economic formations influence the war machine, ie. the form of armies, according to each historical period. Quoting warfare historians, he thus shows, for example, how the Roman empire could create a phalanx because it had a centralized state, which the Greeks didn't have. Manuel de Landa draws on the chaos theory to show how the biosphere reach singularities (or bifurcations) which mark self-organization tresholds where emergent properties are displayed, and claims that the "mecanosphere", constituted by the machinic phylum, possess similar qualities. Examples of such systems include the atmosphere, the solar system, plate tectonics, turbulent fluids, economics, and population growth. Quoting Fernand Braudel's meteorological metaphor to Machiavelli's Italy as a "low pressure area", de Landa shows for example how a certain level of population growth may induce invasions and others wars. Population thus reach a specific point where it changes nature: just as a solid may be transformed into a liquid if it reach a specific singularity, which had to be traced by endless trials in the early creation of alloys — the point where two different metals, put together, become a new metal — this track has been refined by modern military engineers, who are supported by think tanks in their efforts.

As a historian, Manuel de Landa is thus indebted to Fernand Braudel's Annales School and the study of long-scale historical phenomena, as opposed to human-scale phenomena. However, both authors are far from any technological determinism, which would read history as the linear succession of technological progress. As Foucault's "archeology", Manuel de Landa's philosophy of technology leaves place for various causal series which interfers together. But as in A Thousand Years of Nonlinear History (1997), de Landa doesn't allow this perspective to justify any anthropocentrism conception of history, which would be centered on teleological progress. Thus, instead of opposing the man to the machine as in classic philosophy, he plays on the interactions between the war machines and the machinic phylum. For example, he writes:

The machinic phylum, seen as technology's own internal dynamics and cutting edge, could still be seen shining through the brilliant civilian discoveries of the transistor and the integrated chip, which had liberated electronic circuit designs from the constraints on their possible complexity. But the military had already begun to tighten its grip on the evolution of the phylum, on the events happening at its cutting edge, channeling its forces but limiting its potential mutations (p.153).

The next treshold point, or singularity, to be reach, according to de Landa, is the point where the man and the machine cease to oppose themselves, becoming one single war machine, and when that war machine itself is crossed by the machinic phylum — this last condition might be compared to Deleuze's call for the desiring molecular machines to use the social machines, instead of being composed and manipulated in order to form a complex molar machines. The developments of artificial intelligence, which will soon or later lead to the creation of "predatory machines", that is intelligent machines. Even if "the advent of [truly autonomous weapons] may be quite far in the future, the will to endow machines with predatory capabilities has been institutionalized in the [US] military" (p.128) warns de Landa. This disconnexion of the war machines from the machinic phylum, of the military institution from the social formation, may result in such erratic war machines that becomes nomads because of lack of political control: if battles are not strategically ordered following political objectives, than even their victories become meaningless. In this specific case, the positive feedback between the war machine and the machinic phylum is broken. Such positive feedback may be illustrated by the virtuous circle between taxes raising, which permits to fund the creation of professional armies, used in the monarch' wars with other heads of state, but also used to maintain public order, and thus favorize economic growth and thus support the amelioration of current armies; a positive feedback seen by the mercantilism movement). But an army which lost its political goals is doomed to permanently remain on the move, following rivers in order to be able to survive off the territory it occupies: its sheer size forces it to nomadism. In this sense, nomadism may be considered as the failure of the war machine, which has become to itself its own end, disconnected from any social needs and energies. However, this warning of Manuel de Landa against a certain military conception of technology and of warfare is not presented at all as a prophecy which describes with fatalism the future. As some others critical theorists, Manuel de Landa avoids the trap which would force one to choose between plain simple unilateral technological or economic determinism (as in vulgar Marxism) and liberal individualism, which denies the existence of ideology (a denegation which Althusser has demonstrated was itself ideologically founded).

Science fiction may refer to this previsioned radical shift to autonomous warfare as a technological singularity, although de Landa would probably argue that this singularity or bifurcation is yet another emergent property of the biosphere, which has led to the creation of a "mecanosphere" centered on the machinic phylum. In yet another passage, Manuel de Landa writes:

I defined the machinic phylum as the set of all the singularities at the onset of processes of self-organization — the critical points in the flow of matter and energy, points at which these flows spontaneously acquire a new form or pattern. All these processes, involving elements as different as molecules, cells or termites, may be represented by a few mathematical models. Thus, because one and the same singularity may be said to trigger two very different self-organizing effects, the singularity is said to be 'mechanism independent' (p.132)

If "a same singularity may be said to trigger two very different self-organizing effects", neither technophobia, as presented by Virilio's work, or technophilia are justified in themselves. Manuel de Landa demonstrates that de-centering history from a human perspective is not necessarily denying human freedom, opposing himself to those who would argue, for example, that Louis Althusser's explicit "antihumanism" and insistance on Ideological State Apparatuses (I.S.A.) instead of on the universal and individual subject would be a form of Marxism opposed to the Enlightenment's ideals.

[edit] Centralization and decentralization

According to de Landa, centralization and decentralization are two trends in the "war machine": either military commanders try to centralize command and control of each event on the battlefield, and get "human will out of the decision-making loop" or, to the contrary, they delegate responsibility to individual soldiers (eg. platoons or the German mission-type tactics) in order to avoid "friction". "Friction", according to de Landa, is like "noise" — too much undispersed friction blocks the war machine, which destroys itself. Thus, rather than waiting for friction to accumulate at the head of the control, command and communication center (C3), which is the case in centralized armies, decentralized war machines allow it to disperse itself at each level of the machine.

The 1805 Jacquard loom, which used the holes punched in pasteboard punch cards to control the weaving of patterns in fabric, is the first example of a "migration" of human control to machines control, and marks the invention of software according to de Landa. Command and control techniques adapted by the German were then introduced in army arsenals by Frederick Taylor and extended to civilian society: "the imposition of military production methods into the civilian society was accompanied by the transfer of a whole command and control grid." (p.153) The system of Numerical control — and then the CNC — which was developed by funds from the US Air Force, "withdraws all control from workers in the area of weapons production and centralizes it at the top. But if the NC (and related methods) effectively shortened the chain of command be getting humans out of the decision-making loop, it also weakened the civilian sector of the economy by its adverse effects on workers' productivity," (p.154) argues Manuel de Landa. He thus underlines that the US has become a net importer of machine tools for the first time in the 19th century, or points out that while in 1975 all major manufacturers of integrated chips were American, in 1986 only two were not Japanese. In 1982, the Japanase MITI had launched the Fifth Generation Computer Systems project (FGCS) initiative to create computers supposed to perform much calculation utilizing massive parallelism.

According to Manuel de Landa, the Prussian army was thus Jominian, that it favored centralized command of the battlefield and the conduct of military affairs over diplomacy and politics. He opposed Clausewitz's classic theory exposed in On War (1832) of the preeminence of politics over warfare (if strategy is the art of assembling battles, politics is the art of making sense of victories). Although Manuel de Landa doesn't quote Sun Tzu, his use of Clausewitz recalls the Chinese's councils on the way to avoid wars as being the most effective warfare: one may be sure he won the war when actually the war didn't happen. Manuel de Landa claims that this Jominian theory influenced Prussian militarism and, later, the RAND Corporation and current Pentagon policies concerning research and development. This centralization aim always at taking out humans from the decision-making loop, and is therefore closely linked to the evolution of technology — although a major thesis of Manuel de Landa's book is that evolution of technology in itself is not either good or bad, as do technophiles and technophobes hope or fear. It may be used to keep the human will out of the loop, or at contrary to favorize cooperative behavior and decentralization: the classic example used is the hackers reappropriation of the military ARPANET in the early ages of the Internet.

Thus, the Schlieffen Plan, formulated by the German general staff after the 1870-71 Franco-Prussian war, is a good example of centralized war planning and of Jominian theory: everything was so rigidly planned that there was almost zero ability to adapt for sudden changes. When World War I started in August 1914, the military told the emperor that they could do nothing but invade France, although the emperor changed his mind, hoping that if he didn't invade France, Great Britain wouldn't enter the war (in virtue of the 1904 Entente cordiale agreement). But the plan was too rigid and didn't allow for modification, thus potentially becoming one of the indirect causes of the war (although it surely wasn't the only one: de Landa, who begins his book quoting Fernand Braudel, doesn't believe in unicausality or determinism).

[edit] Wargaming and Game Theory

Manuel de Landa also shows how wargaming, invented in the early 19th century by Prussians under the name of Kriegspiel, has been used since that time for modelization of future battles, in particular by the general staff, which may be considered as the "institutionalized brain" of the armed forces — until their substitution by think tanks, the first one being the RAND Corporation, charged of the elaboration of science policy in the frame of the military-industrial complex. Frederick the Great was fascinated with automatons, as Foucault has shown, and with miniature wargames. 19th century wargaming modelization, which benefited from the cartography progress, was dependent on dices at the beginning to represent the effects of chaos. Eventually, these irrational conditions were taken out of the loop, as well as human will: current military wargames oppose computers, and not human beings. It was shown during the nuclear arms race that human beings refused in game modelizations to cross the treshold and press the red button, which convinced military programers to take out human players.

De Landa distinguishes various "ages" of war machines (although they probably don't succeed each other in a simple way; historical linear succession also being something cast in doubt by Foucault and Deleuze); he also defines various "levels" of war machines (tactics, strategy and logistics, which necessarily involve politics).

Henceforth, describing the passage from the "clockwork paradigm" to the "motor paradigm", he quotes Michel Serres' studies to demonstrate how this new paradigm led to the creation of an "abstract motor", composed of three components: a reservoir (steam in the case of the steam engine), a form of exploitable difference (heat/cold difference) and a "diagram" or "program" for the exploitation of (thermal) differences. Michel Serres thus mentioned Darwin, Marx and Freud as examples in the area of scientific discourse:

reservoirs of population, of capital or of unconscious desires, put to work by the use of differences of fitness, class or sex, each following a procedure directing the circulation of naturally selected species, or commodities and labor, or symptoms and fantasies... (p.141)

Thus, Napoleon's armies, born from the 1789 French Revolution, marked a new treshold of the machinic phylum, or singularities or bifurcation: emergent properties are displayed in this "evolution" from the "clockwork paradigm" to the "motor paradigm". This evolution is not merely technological; it is not so much the invention of the steam engine itself — the first type of motor — that determines this "evolution". Indeed, the first steam engine was invented through tinkering, and can thus not be said to be the consequences of a "paradigm shift" as would Thomas Kuhn conceive it. There is no necessary preeminence of science over technology (nor the reverse). Manuel de Landa thus explains that the "abstract motor" is more important than the "concrete motor" itself, taking as example the dazzling victories during the Napoleonic Wars:

Napoleon himself did not incorporate the motor as a technical object into his war machine (as mentioned, he explicitly rejected the use of steamboats), but the abstract motor did affect the mode of assemblage of the Napoleonic armies: "motorized" armies were the first to make use of a reservoir of loyal human bodies, to insert these bodies into a flexible calculus (nonlinear tactics), and to exploit the friend/foe difference to take warfare from clockwork dynastic duels to massive confrontations between nations. (p.141)

Thus, Napoleon's true innovation is not in the implementation of the motor invention — he rejected the use of steamboats — but his use of the pool of energy formed by patriotism, itself fuelled by the French Revolution. This high morale gave the possibility of conscription, but also of allowing more local initiative and decentralization to the army, since French commanders didn't dread, as their counterparts, endless cases of desertions if they allowed small groups of soldiers to take over specific missions.

De Landa also notes how von Neumann was hired by the RAND Corporation to improve war exercises, which he did by devising game theory, which helped the Pentagon theorize nuclear strategy. In particular, game theory was used to represent the Cold War dualism conflict as an instantiation of the Prisoner's dilemma, a zero-sum game. Since the zero-sum fallacy wasn't yet theorized, this led to systemic bias in favor of conflict against cooperative games, according to de Landa. Thus, the massive retaliation nuclear strategy was chosen, although nuclear disarmament would have been, in a more realistic win-win game, the best solution. The Turing machines were also perfect "abstract machines" which would be implemented in concrete machines only later.

[edit] See also

[edit] Source