Vorticity equation

From Wikipedia, the free encyclopedia

The vorticity equation is an important prognostic equation in the atmospheric sciences. Vorticity is a vector, therefore, there are three components. The equation of vorticity (three components in the canonical form) describes the total derivative (that is, the local change due to local change with time and advection) of vorticity, and thus can be stated in either relative or absolute form.

The more compact version is that for absolute vorticity, component η, using the pressure system:

\frac{d \eta}{d t} = -\eta  \nabla_h \cdot\mathbf{v}_h - \left( \frac{\partial \omega}{\partial x} \frac{\partial v}{\partial z} - \frac{\partial \omega}{\partial y} \frac{\partial u}{\partial z} \right) - \frac{1}{\rho^2} \mathbf{k} \cdot ( \nabla_h p \times \nabla_h \rho )

Here, ρ is density, u, v, and ω are the components of wind velocity, and \nabla_h is the 2-dimensional (i.e. horizontal-component-only) del.

The terms on the RHS denote the positive or negative generation of absolute vorticity by divergence of air, twisting of the axis of rotation, and baroclinity, respectively.

[edit] See also