Talk:Velocity-addition formula

From Wikipedia, the free encyclopedia

http://upload.wikimedia.org/math/6/d/c/6dc88e88a74eac0290cb0d575aa7a147.png There is an algebraic error in the above equation. The rightmost term should read: (c v1 + c v2)/(c + [v1 v2]/c). Basic unit analysis shows that the original quantity is incorrect.

Sorry for the botched image include. But the URL is there for reference. Cheers, Justin.

Right you are. I fixed it. —Keenan Pepper 02:52, 2 July 2006 (UTC)

[edit] Problem of symmetry

Sorry folks, but are you sure that this formula is correct: \mathbf{v_1} \oplus \mathbf{v_2}=\frac{\mathbf{v_1}+\mathbf{v_2}}{1+ \frac{\mathbf{v_1}\cdot\mathbf{v_2}}{c^2}} + \frac{1}{c^2} \cdot \frac{1}{1+\sqrt{1-\frac{v_1^2}{c^2}}} \cdot \frac{\mathbf{v_1}\times(\mathbf{v_1}\times\mathbf{v_2})}{1+\frac{\mathbf{v_1}\cdot\mathbf{v_2}}{c^2}}

I have my doubts about that, since \oplus is not symmetric. The result of this formula seems to be correct only, if v1 and v2 are collinear.

Can anyone confirm this? --141.33.44.201 10:20, 14 December 2006 (UTC)

[edit] Velocity units

"When Velocity is expressed in metres per second, instead of as a fraction of the speed of light the equation becomes..."

Of course, this statement is true, but it would also be true if velocity is expressed in kilometers per hour, miles per hour, or knots too. The main thing is unit distance and time rather than fraction of C. Perhaps the statement should reflect this fact.