Vector calculus identities

From Wikipedia, the free encyclopedia

The following identities are important in vector calculus:

Contents

[edit] Single Operators (Summary)

This section explicitly lists what some symbols mean for clarity.

[edit] Divergence

[edit] Divergence of a Vector Field

For a vector field \mathbf{v}, Divergence is generally written as

\nabla \cdot \mathbf{v} = div(\mathbf{v})

and is a scalar field.

[edit] Divergence of a Tensor

For a Tensor \mathbf{A}, Divergence is generally written as

\nabla \cdot \mathbf{A} = div(\mathbf{A})

and is a vector.

[edit] Curl

For a vector field \mathbf{v}, Curl is generally written as

\nabla \times \mathbf{v} = curl(\mathbf{v})

and is a vector field.

[edit] Gradient

[edit] Gradient of a Vector Field

For a vector field \mathbf{v}, Gradient is generally written as

\nabla \mathbf{v} = grad(\mathbf{v})

and is a tensor

[edit] Gradient of a Scalar Field

For a scalar field, ψ, the gradient is generally written as

\nabla \psi = grad(\psi)

and is a vector field.

[edit] Combinations of multiple operators

[edit] Curl of the gradient

The curl of the gradient of any scalar field \ \psi is always zero:

\nabla \times ( \nabla \psi )  = 0

[edit] Divergence of the curl

The divergence of the curl of any vector field \ \mathbf{A} is always zero:

\nabla \cdot ( \nabla \times \mathbf{A} ) = 0

[edit] Divergence of the gradient

The Laplacian of a scalar field is defined as the divergence of the gradient:

\nabla \cdot (\nabla \psi) = \nabla^2 \psi

Note that the result is a scalar quantity.

[edit] Curl of the curl

\nabla \times \nabla \times \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla^{2}\mathbf{A}

[edit] Properties

[edit] Distributive property

\nabla \cdot ( \mathbf{A} + \mathbf{B} ) = \nabla \cdot \mathbf{A} + \nabla \cdot \mathbf{B}
\nabla \times ( \mathbf{A} + \mathbf{B} ) = \nabla \times \mathbf{A} + \nabla \times \mathbf{B}

[edit] Vector dot product

\nabla(\mathbf{A} \cdot \mathbf{B}) = (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} + \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A})

[edit] Vector cross product

\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \nabla \times \mathbf{A} - \mathbf{A} \cdot \nabla \times \mathbf{B}
\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}

[edit] Product of a scalar and a vector

\nabla \cdot (\psi\mathbf{A}) = \mathbf{A} \cdot\nabla\psi + \psi\nabla \cdot \mathbf{A}
\nabla \times (\psi\mathbf{A}) = \psi\nabla \times \mathbf{A} - \mathbf{A} \times \nabla\psi

[edit] More identities

\frac{1}{2} \nabla A^2 = \mathbf{A} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{A}

[edit] References

  • Constantine A. Balanis. Advanced Engineering Electromagnetics.
  • H. M. Schey (1997). Div Grad Curl and all that: An informal text on vector calculus. W. W. Norton & Company. ISBN 0-393-96997.

[edit] See also


In other languages