Vagueness
From Wikipedia, the free encyclopedia
Ambiguity is one way in which the meanings of words and phrases can be unclear, but there is another way, which is different from ambiguity: vagueness. For example, some men are definitely bald, and there is no debating the matter, for instance, Patrick Stewart (Captain Picard of Star Trek). Other men are definitely not bald, for example, Bill Clinton. Then there are quite a few men who carefully comb a scanty amount of hair over their scalps, about whom we are not sure whether to say they are bald or not. There is no clear line.
Another example of a vague concept is the concept of a heap. Two or three grains of sand is not a heap, but a thousand is. How many grains of sand does it take to make a heap? There is no clear line. (See the paradox of the heap.)
When we look at a man with thinning hair or a small pile of sand, and we do not know whether to call the man "bald", or the sand a "heap", we have found a borderline case; it is not clear if the concept applies. We can make a general principle, which might work as a definition of the word "vague":
- Vagueness is a linguistic and philosophical term. To say that a concept is vague is to say that there can be no clear fact of the matter whether the concept applies or not.
Contents |
[edit] Importance
Consider those animals in Alaska that are the result of breeding Huskies and wolves: are they dogs? It is not clear: they are borderline cases of dogs. This means our ordinary concept of doghood is not clear enough to let us rule conclusively in this case.
Vagueness is important philosophically. Suppose we want to come up with a definition of "right" in the moral sense. We want a definition to cover actions that are clearly right and exclude actions that are clearly wrong, but what do we do with the borderline cases? Surely there are such cases. Some philosophers say we should try to come up with a definition that is itself unclear on just those cases. Others say that we have an interest in making our definitions more precise than ordinary language, or our ordinary concepts, themselves allow; they recommend we advance precising definitions.
Vagueness is also a problem which arises in law, and in some cases judges have to arbitrate regarding whether a borderline case does, or does not, satisfy a given vague concept. Examples include disability (how much loss of vision is required before one is legally blind?), human life (at what point from conception to birth is one a legal human being, protected for instance by laws against murder?), adulthood (most familiarly reflected in legal ages for driving, drinking, voting, consensual sex, etc.), race (how to classify someone of mixed racial heritage), etc. Even such apparently unambiguous concepts such as gender can be subject to vagueness problems, not just from transsexuals' gender transitions but also from certain genetic conditions which can give an individual both male and female biological traits (see intersexual).
Many scientific concepts are of necessity vague, for instance species in biology cannot be precisely defined, owing to unclear cases such as ring species. Nonetheless, the concept of species can be clearly applied in the vast majority of cases. As this example illustrates, to say that a definition is "vague" is not necessarily a criticism.
[edit] Approaches
The philosophical question of what the best theoretical treatment of vagueness is - which is closely related to the problem of the paradox of the heap - has been the subject of much philosophical debate.
[edit] Fuzzy logic
One theoretical approach is that of fuzzy logic, developed by American mathematician (of Azerbaijan origin) Lotfi Zadeh. Fuzzy logic proposes a gradual transition between "perfect falsity", for example, the statement "Bill Clinton is bald", to "perfect truth", for, say, "Patrick Stewart is bald". In ordinary logics, there are only two truth-values: "true" and "false". The fuzzy perspective differs by introducing an infinite number of truth-values along a spectrum between perfect truth and perfect falsity. Perfect truth may be represented by "1", and perfect falsity by "0". Borderline cases are thought of as having a "truth-value" anywhere between 0 and 1 (for example, 0.6). Advocates of the fuzzy logic approach have included K. F. Machina (1976) and Dorothy Edgington (1997).
[edit] Supervaluationism
Another theoretical approach is known as "supervaluationism". This approach has been defended by Kit Fine and Rosanna Keefe. Fine argues that borderline applications of vague predicates are neither true nor false, but rather are instances of "truth value gaps". He defends an interesting and sophisticated system of vague semantics, based on the notion that a vague predicate might be "made precise" in many alternative ways. This system has the consequence that borderline cases of vague terms yield statements that are neither true, nor false.
Given a supervaluationist semantics, one can define the predicate 'supertrue' as meaning "true on all precisifications". This predicate will not change the semantics of atomic statements (e.g. 'Frank is bald', where Frank is a borderline case of baldness), but does have consequences for logically complex statements. In particular, the tautologies of sentential logic, such as 'Frank is bald or Frank is not bald)', will turn out to be supertrue, since on any precisification of baldness, either 'Frank is bald' or 'Frank is not bald' will be true. Since the presence of borderline cases seems to threaten principles like this one (excluded middle), the fact that supervaluationism can "rescue" them is seen as a virtue.
[edit] The epistemic view
A third approach, known as the "epistemic view", has recently been defended by Timothy Williamson (1994) and R. A. Sorensen (1988). They maintain that vague predicates do, in fact, draw sharp boundaries, but that we just do not know where these boundaries lie. Our confusion about whether some vague word does or does not apply in a borderline case is explained as being due to our ignorance. For example, on the epistemic view, there is a fact of the matter, for every person, about whether that person is old, or not old. It is just that we may sometimes be ignorant of this fact. The epistemic view, though initially counter-intuitive, has been defended with some interesting and forceful philosophical arguments.
[edit] Vagueness as a property of objects
One possibility is that our words and concepts are perfectly precise, but that objects themselves are vague. Consider Lewis' example of a cloud: it's not clear where the boundary of a cloud lies; for any given bit of water vapor, we can ask whether it's part of the cloud or not, and for many such bits, we won't know how to answer. So perhaps our term 'cloud' denotes a vague object precisely. This strategy has been poorly received, in part due to Gareth Evans's short paper "Can There Be Vague Objects?" (1978). Evans's argument appears to show that there can be no vague identities (e.g. "Princeton = Princeton Borough"), but as Lewis (1988) makes clear, Evans takes for granted that there are in fact vague identities, and that any proof to the contrary cannot be right. Since the proof Evans produces relies on the assumption that terms precisely denote vague objects, the implication is that the assumption is false, and so the vague-objects view is wrong.
[edit] Legal principle
In the common law system, vagueness is a possible legal defence against by-laws and other regulations. The legal principle is that delegated power cannot be used more broadly than the delegator intended. Therefore, a regulation may not be so vague as to regulate areas beyond what the law allows. Any such regulation would be "void for vagueness" and unenforceable. This principle is sometimes used to strike down municipal by-laws that forbid "explicit" or "objectionable" contents from being sold in a certain city; courts often find such expressions to be too vague, giving municipal inspectors discretion beyond what the law allows.
[edit] See also
[edit] References
- Edgington, D. 1997. "Vagueness by degrees", in Keefe & Smith eds. (1999), pp. 294-316.
- Keefe, R. & Smith, P., eds. 1997. Vagueness: A Reader. Cambridge, Massachusetts: MIT Press
The editors' long introduction gives a clear and very useful overview of theories of vagueness, and they collect many classic papers on the subject. - Keefe, R. 2000. Vagueness. Cambridge: Cambridge University Press
- Machina, K.F. 1976. "Truth, belief and vagueness", in Journal of Philosophical Logic Vol. 5. pp. 47-78
- Sorensen, R.A. Blindspots. Oxford: Clarendon Press
- Williamson, T. 1994. Vagueness London: Routledge. The history of the problem of vagueness is traced, from the first Sorites Paradox to contemporary attempts to deal with higher-order vagueness such as many-valued logic, supervaluationism, and fuzzy logic. Technicalities are kept to a minimum to favour a clear account, extremely useful to both students and researchers.