Uniformizable space
From Wikipedia, the free encyclopedia
In topology and related areas of mathematics a topological space is called uniformizable if there exists a uniform structure which induces the topology of the space.
- A topological space is uniformizable if and only if it is a gauge space.
- A topological space is uniformizable if and only if the topology is completely regular.
[edit] See also
- Metrizable space, a topological space where a metric exists which induces the topology of the space