Translation (geometry)
From Wikipedia, the free encyclopedia
In Euclidean geometry, a translation is moving every point a constant distance in a specified direction. It is one of the rigid motions (other rigid motions include rotation and reflection). A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system.
If v is a fixed vector, then the translation Tv will work as Tv(p) = p + v.
If T is a translation, then the image of a subset A under the function T is the translate of A by T. The translate of A by Tv is often written A + v.
In an Euclidean space, any translation is an isometry. The set of all translations form the translation group T, which is isomorphic to the space itself, and a normal subgroup of Euclidean group E(n ). The quotient group of E(n ) by T is isomorphic to the orthogonal group O(n ):
- E(n ) / T ≅ O(n ).
[edit] Matrix representation
Since a translation is an affine transformation but not a linear transformation, homogeneous coordinates are normally used to represent the translation operator by a matrix. Thus we write the 3-dimensional vector w = (wx, wy, wz) using 4 homogeneous coordinates as w = (wx, wy, wz, 1).
To translate an object by a vector v, each homogeneous vector p (written in homogeneous coordinates) would need to be multiplied by this translation matrix:
As shown below, the multiplication will give the expected result:
The inverse of a translation matrix can be obtained by reversing the direction of the vector:
Similarly, the product of translation matrices is given by adding the vectors:
Because addition of vectors is commutative, multiplication of translation matrices is therefore also commutative (unlike multiplication of arbitrary matrices).
[edit] See also
[edit] External links
- Translation Transform at cut-the-knot
- Geometric Translation (Interactive Animation) at Math Is Fun