Transcranial doppler
From Wikipedia, the free encyclopedia
Transcranial Doppler (TCD) is a test that measures the velocity of blood flow through the brain's blood vessels. Used to help in the diagnosis of emboli, stenosis, vasospasm from a subarachnoid hemorrhage (bleeding from a ruptured aneurysm), and other problems, this relatively quick and inexpensive test is growing in popularity in the United States. The equipment used for these tests is becoming increasingly portable, making it possible for a clinician to travel to a hospital, doctor's office or nursing home for both inpatient and outpatient studies. It is often used in conjunction with other tests such as MRI, MRA, carotid duplex ultrasound and CT scans.
[edit] Two methods
Two methods of recording may be used for this procedure. The first uses "B-mode" imaging, which displays a 2-dimensional image as seen by the ultrasound probe. Once the desired blood vessel is found, blood flow velocities may be measured with a pulsed doppler probe, which graphs velocities over time. Together, these make a duplex test. The second method of recording uses only the second probe function, relying instead on the training and experience of the clinician in finding the correct vessels.
[edit] How it works
Blood flow velocity is recorded by emitting a high-pitched sound wave from the ultrasound probe, which then bounces off of various materials to be measured by the same probe. A specific frequency is used (usually a multiple of 2 MHz), and the speed of the blood in relation to the probe causes a phase shift, wherein the frequency is increased or decreased. This frequency change directly correlates with the speed of the blood, which is then recorded electronically for later analysis. Normally a range of depths and angles must be measured to ascertain the correct velocities, as recording from an angle to the blood vessel yields an artificially low velocity.
Because the bones of the skull block the transmission of ultrasound, regions with thinner walls - insonation windows - must be used for analyzing. For this reason, recording is performed in the temporal region above the cheekbone/zygomatic arch, through the eyes, below the jaw, and from the back of the head. Patient age, gender, race and other factors affect bone thickness, making some examinations more difficult or even impossible. Most can still be performed to obtain acceptable responses, sometimes requiring using alternate sites from which to view the vessels.
[edit] References
- The role of transcranial Doppler in the management of patients with subarachnoid haemorrhage--a review Acta Neurochir Suppl. 1999;72:59-71. Review. Lindegaard KF. (Pubmed).
- Compumedics DWL Doppler Homepage.