Talk:Topological defect

From Wikipedia, the free encyclopedia

I think the subject is too narrowly defined. After all, topological defects arise in many other context than cosmology,

That's why I put "In cosmology," at the top, to suggest that this wasn't the only context in which topological defects were relevant. :) Unfortunately I have no knowledge of the other contexts, perhaps you could add stubs for a few? Bryan 23:38, 8 Jun 2004 (UTC)
This certainly is not the definition of topological defect which is completely independent of physical system . Loosely stated, it can expressed in terms of singularities in the mapping from some manifold to a topological space. I am not very thorough in the subject either but this article seriously needs to be rewritten. —The preceding unsigned comment was added by 203.200.95.130 (talkcontribs).

[edit] Often stable

The article says a topological defect is a (often) stable configuration. Does it mean it is often used to mean a stable defect or the defects are stable most of the time? Billlion 18:08, 16 Nov 2004 (UTC)

Textures, which are often listed as being topological defects, are in fact not stable. The other types of defects listed are stable. (Of course, it's often possible to cook up exceptions, but generally the most basic strings, domain walls and monopoles are always completely classically stable.) User:mattmartin 8 Mar 2005

[edit] Mistake?

From the article:

"Typically, this occurs because the boundary on which the boundary conditions are specified has a non-trivial homotopy group which is
preserved by differential equations; the solutions to the differential equations are then topologically distinct, and are classified
by their homotopy class."

I don't think the homotopy groups of the boundary are what is relevant. It is the homotopy groups of what is called the `vacuum manifold', at least for a scalar field theory. The boundary conditions constitute a map from the boundary of your space to the vacuum manifold, and it is this map which can be homotopically non-trivial. Shambolic Entity 03:32, 2 November 2006 (UTC)