Tinkerbell map
From Wikipedia, the free encyclopedia
The Tinkerbell map is a discrete-time dynamical system given by:
Some commonly quoted values of a, b, c, and d are
- a=0.3, b=0.6, c=2, d=0.27.
- a=0.9, b=-0.6013, c=2, d=0.5.
[edit] See also
[edit] References
- C.L. Bremer & D.T. Kaplan, Markov Chain Monte Carlo Estimation of Nonlinear Dynamics from Time Series
- K.T. Alligood, T.D. Sauer & J.A. Yorke, Chaos: An Introduction to Dynamical Systems, Berlin: Springer-Verlag, 1996.
- P.E. McSharry & P.R.C. Ruffino, Asymptotic angular stability in non-linear systems: rotation numbers and winding numbers
- R.L. Davidchack, Y.-C. Lai, A. Klebanoff & E.M. Bollt, Towards complete detection of unstable periodic orbits in chaotic systems