Terminal node controller

From Wikipedia, the free encyclopedia

A terminal node controller (TNC) is a device used by amateur radio operators to participate in AX.25 packet radio networks. It is similar in function to the Packet Assembler Disassemblers used on X.25 networks.

The TNC was originally developed by Doug Lockhart, VE7APU, of Vancouver, British Columbia.

[edit] Description

A typical model consists of a microprocessor, a modem, and software (in EPROM) that implements the AX.25 protocol and provides a command line interface to the user. (Commonly, this software provides other functionality as well, such as a basic bulletin board system to receive messages while the operator is away.) Because the TNC contains all the intelligence needed to communicate over an AX.25 network, no external computer is required. All of the network's resources can be accessed using a dumb terminal.

The TNC connects to the terminal and a radio transceiver. Data from the terminal is formatted into AX.25 packets and modulated into audio signals (in traditional applications) for transmission by the radio. Received signals are demodulated, the data unformatted, and the output sent to the terminal for display. In addition to these functions, the TNC manages the radio channel according to guidelines in the AX.25 specification.

[edit] Current status

TNCs were uniquely necessary when home computers lacked the sophistication needed to simultaneously manage a network connection and communicate with the user. They are still used today throughout a very popular position reporting network known as APRS on 144.390 MHz.

Powerful desktop computers are commonplace in amateur radio stations. Software modems using the computer's soundcard have lowered hardware requirements even further. However, with their lower cost comes additional tweaking in order to make them work properly, and they often don't provide the decoding capabilities at low Signal/Noise ratios. Some handheld and mobile VHF radios currently on the market incorporate TNC abilities within the radio itself in support of the APRS protocol.

Many TNCs are still in use, especially in unattended stations where reliability is important. The importance of location to the APRS system has fueled development of a new generation of small low-power TNCs often integrated with a GPS module for use in mobile tracking stations.

APRS digipeating protocols require specific naming conventions, and older TNCs may not have the required support to be used as a digipeater. However, almost any TNC can be pressed into service for Home or Tracker use. TNCs that were clones of the popular TAPR TNC-2 may be upgradeable via the UIDIGI firmware project.

[edit] External links


In other languages