Talk:Speaker wire
From Wikipedia, the free encyclopedia
The fourth paragraph contains the sentences, "Many manufacturers catering to audiophiles as well as those available in department stores make unmeasurable claims about wire being open, dynamic, or smooth," and, "To justify the claims, many rely on less understood electrical properties such as skin effect or resonance." These sentences beg the question, "How many?" This set of Weasel Words could be improved with references to manufacturers that make such claims, department stores that carry the products under question, as well as articles that call into question the claims that the manufacturers make.
The only references made in this article are to Speaker Wire Manufacturers. The following describes areas which need references in order to reduce original research.
1. The first sentence indicates an existing debate in the audiophile and high fidelity communities but does not provide any primary or secondary references to this debate. It also shows bias by questioning the honesty of marketing practices without making any references.
2. The second sentence implies that there is a written history of Speaker Wire, but does not provide a reference.
3. While electric principals are discussed in physics and engineering classes and an understanding of the knowledge is widespread among persons with scientific backgrounds, I do not believe that such knowledge is so commonplace to warrant no reference. In addition, there are possible references for the science discussed ad infinitum. Therefore a reference should be provided not only to resolve original content disputes but also to enlighten the reader. by CEMiii: just read almost any elec engr textbook.
4. References should be added to the NFPA National Electric Code, any applicable TIA standards as well as any other standards that may apply. by CEMiii: no NEC applies.
5. The sentences, "The quality of construction is often just for aesthetic purposes and convenience," and, "Highly stranded wires tend to be more flexible and hence easier to work with," may be invalid as a pair. I may be able to provide a reference that shows the affects of Coulomb's Lawon stranded wires as opposed to a thicker single wire. The sentence, "To achieve a low resistance in the wire, use shorter lengths, a larger gauge of wire, and better conducting materials," is also disputed using Coulomb's Law.
by CEMiii: it is well known by any application engineer that more strands equals more flexibility! That is why all appliance cords, especially sweeper and powered hand sanders have small, highly stranded cords. This is why the trailing cables for mine face-cutting machines [which usually have four 600 volt insulated conductors inside of an overall jacket], welding electrode, and locomotive cables are quite flexible. In the 10y I worked at Anaconda Wire & Cable R&D, I believe the flex testing machine ran 80+ percent of each work day in the Portable Cable Lab!
Coulomb's law will only be an influence for higher currents at high frequencies.
6. The linked Wikipedia article about Gold states that Gold does, in fact, oxidize, proving the following sentence wrong, "However, gold does not oxidize." by CEMiii: the 62nd edition of Handbook of Physics & Chemistry states that gold is unaffected by air.
Oobyduby 21:47, 7 March 2006 (UTC)
- Actually, most manufacturers sex up their wires with all sorts of odd stuff. The problem is that nobody seems to be doing ABX testing on them to hear a difference. There are also machines that can measure many properties of the wire to test the claims. Any claim that a wire is 'smoother' or otherwise less than clear deserves special attention, since the wires are not supposed to affect the fidelity of the connection. They shouldn't be 'colouring' the sound.
- All of this IS testable, I just haven't a clue why a group doesn't. Perhaps someone can find an independent source of wire tests?
- Also, I sent a request to the people maintaining the Coulomb's Law page to see if it's applicable in this situation. If it is, it probably should be added to the article.
- Lowmagnet 22:00, 25 March 2006 (UTC)
[edit] Picture
Does anyone have a better close up picture of the stripped wire?--Light current 15:45, 2 June 2006 (UTC)
[edit] Capacitance Causes High-Frequency Loss?
Someone just added several paragraphs on this topic. Let's stop and think this through:
- For the purposes of argument, let's assume 100 pF per foot. This strikes me as outrageously high; I just measured some 14 gauge zip-cord-like cable on my precision LCR bridge and got 16 pF/foot, but wot the 'ell, ehh? 'Factor of >6 safety margin.
- Let's assume 20 KHz, the worst-case frequency.
- That means the capacitive reactance is about 80Kohms per foot at 20 KHz. So let's take a 20 foot (rather long) speaker cable. That means that the total capacitive reactance of the cable is about 4 KOhms.
- The output impedance of a transistorized amplifier is something less than an ohm, but let's take a hypothetical 16 Ohm tube amp instead. 'Nuther safety margin.
- Connected to this amp, our incredibly capacitive speaker cable will cause, at 20 KHz, the loss of about 16/4000 = 0.4% of the signal.
Based on all this, does anyone see a reason why we shouldn't revert out (or substantially attenuate) the new section on cable capacitance?
Atlant 17:37, 12 December 2006 (UTC)
- The editor went on adding material, eventually creating an example based on speaker wire with a capacitance of 1000 pF/ft. At this point, my threshold had been reached and I reverted out the entire section.
- I have no objection to a mention of capacitance, but its effect in speaker wires is negligible for essentially all practical cases.
- Atlant 12:18, 13 December 2006 (UTC)