Talk:Sorites paradox
From Wikipedia, the free encyclopedia
A suggested definition for a heap: a combination of more than 2 objects that raise at least one of their members above the others. Thus four carefully arranged grains of sand of equal size could be heap (3 forming a tripod for a 4th - or two large grains supporting a third). Whereas a million grains of sand, with none on top of one another does not equal a heap.
~ender 2003-09-12 06:14:MST
- For me, "heapness" is not just about "raising up"; I agreee with the Greeks that it has something to do with how many objects are involved (or, if not that, how large the collection of objects is). I do agree that a million grains none on top of any others isn't a heap, though, so perhaps we should mention raising up in the article somehow. --Ryguasu 14:28, 12 Sep 2003 (UTC)
The sorites isn't really about 'heaps' as such... but there is one philosopher -- I forget who just now -- who has half-seriously suggested that four is the least number of grains that can make a heap, just as ender described above.
This is part of the tradition of resolving the paradox by denying the 'tolerance' premise -- ie that there are no two elements a, b of a sorites series such that p(a) but not p(b). In other words, one resolution is to say that the definition of the predicate can be sharpened so that there is a definite cutover point. In this case, removing one grain from a heap of size 4 creates a non-heap, and so one of the steps in the paradoxical argument now fails. In other situations, however, this can be powerfully counterintuitive, IMHO.
Ornette 16:58, 3 October 2005 (UTC)
- Yes. The paradox isn't about heaps specifically, but about imprecise definitions. Is a man with a single hair on his head bald? Is a man with two, three... thousand, ten thousands hairs bald? And so on, there are many definitions.
- However, I think that we should mention this "solution" of the paradox in the article (while of course stating that that does not impede the paradox). Nikola 21:04, 17 October 2005 (UTC)
Contents |
[edit] A case for name change?
I suggest that this article should instead be called The sorites paradox, and that Paradox of the heap should redirect here, rather than the other way around. In the philosophical literature in which this paradox is discussed, it is, I think, more commonly referred to as "the sorites paradox" than as "the paradox of the heap". Such a name change would be less prone to suggest that the philosophical problem which this article is about is a problem specific to heaps. Opinions? Matt 9 Nov. 2005
- I tend to agree. Ornette 18:02, 8 November 2005 (UTC)
- I agree as well. --Pfafrich 21:04, 8 January 2006 (UTC)
- I definetely agree, change the name to Sorities Paradox, it is better known that way. 70.111.248.60 01:43, 19 April 2006 (UTC)
- Well, maybe not that well known, because you misspelled it. —Keenan Pepper 02:24, 19 April 2006 (UTC)
- I strongly agree. Maelin 10:31, 31 July 2006 (UTC)
As long as whichever one redirects to the other, it doesn't matter, both names are used in the literature. Yesterdog 00:47, 16 May 2006 (UTC)
[edit] Case for a merger?
There are four articles in Wikipedia dealing with essentially one and the same philosophical topic: Imprecise language, Paradox of the heap, Vagueness and Continuum fallacy. (Sorites paradox redirects to Paradox of the heap.) I have done a little editing of the Vagueness page, but really I think all four pages should be merged, or that at very least, they be rationalised to two pages, one a longer one on the philosophical problem of vagueness, and the other a quick summary of the sorites paradox with a link to the vagueness page for a more in-depth discussion. What do people think? Matt 9 Nov. 2005
- I'm not sure that I agree. These are related, but not neccessarily the same topic. The fallacy which uses the paradox is something different from the paradox. (And, add to the list the Ship of Theseus.) What benefit would there be from a merge? Nikola 19:09, 9 November 2005 (UTC)
-
- Sure. So I now have a more modest proposal (See Talk: Imprecise language.) Btw I think Ship of Theseus is certainly a different thing. User:Matt9090 10 Nov. 2005
[edit] Removed section
The section entitled "idiot's solution" did not make a lot of sense. I could not discern what the "solution" actually was that was being offered. Also note that Zeno's paradox of the frog jumping across the pond in jumps each 1/2 as big as the last etc. has very little to do with the paradox of the heap. They are different puzzles with different solutions. The new section seemed to suggest there was some sort of connection but left the reader with no idea what this connection actually consisted in. So I deleted the new section. User:Matt9090 14 Dec. 2005
[edit] Differences in Ages
This paradox reminded me of something I've heard often. It's often said that age x is essentially the same as age x±1 (ie. "What's the difference between 25 and 26?" as an argument for still doing something done at 25 at 26), which infers that the difference between x and x±1 (in terms of ages) is negligible. Obviously, this can be extended in both directions infinitely: by applying this principal recursively, the difference between any number and any other number can be considered negligible (in the case of ages, at least). Logically, of course, this doesn't make sense. I'm not sure if this is an appropriate concept to discuss in this article. --Dvandersluis 20:41, 23 June 2006 (UTC)
Actually, I think this argument isn't very well-liked among philosophers. If you can find a lot who argue for it, feel free to put it up, but keep in mind one argument: 25 and 26 aren't essentially the same, they merely are so close that they're almost the same thing (much like how 1.1 rounds to 1.) However, 25 and 40 are more equivalent to 1 and 2.1.204.95.23.122 20:50, 24 November 2006 (UTC)
[edit] Three Valued Logic
The problem of describing resolutions to paradoxes is that one has to understand why something is a paradox to begin with and why a paradox is resolved by your solution.
From the page:
- Three valued systems do not resolve the paradox as there is still a dividing line between heap and unsure and also between unsure and not-heap.
How is this not a resolution? We've resolved it by defining set boundaries.... it may not be a satisfactory resolution, but it would appear to give a simple though arbitrary answer. It is as much a resolution as the Setting a fixed boundary solution. It would seem there should be better phrasing or wording here as to what is meant. Maybe a sentence about how the the valued logic solution no better matches our intuition than the aforementioned solution, or something.
Root4(one) 04:16, 4 December 2006 (UTC)