Solid modeling

From Wikipedia, the free encyclopedia

Solid modeling (or modelling) is the unambiguous representation of the solid parts of an object, that is, models of solid objects suitable for computer processing. It is also known as volume modeling. Other modeling methods include surface models (used extensively in automotive and consumer product design as well as entertainment animation) and wire frame models (which can be ambiguous about solid volume).

Primary uses of solid modeling are for CAD, engineering analysis, computer graphics and animation, rapid prototyping, medical testing, product visualization and visualization of scientific research.

For an example of relational solid modeling go to: http://video.google.com/videoplay?docid=-3321643196128965948&q=KEARSLEY&hl=en

Contents

[edit] Basic theoretical concepts

  • Sweeping
    • An area feature is "swept out" by moving a primitive along a path to form a solid feature. These volumes either add to the object ("extrusion") or remove material ("cutter path").
    • Also known as 'sketcher based modeling'.
    • Analogous to various manufacturing techniques such as extrusion, milling, lathe and others.
  • Parameterized primitive instancing.
    • An object is specified by reference to a library of parameterized primitives.
    • For example, a bolt is modeled for a library, this model is used for all bolt sizes by modifying a set of its parameters.
  • Spatial occupancy (voxel)
    • The whole space is subdivided into regular cells, and the object is specified by the set of cells it occupies.
    • Models described this way lend themselves to Finite difference analysis.
    • This is usually done after a model is made, as part of automated pre-processing for analysis software.
  • Facet modeling
    • Forming the outside surface form of the volume from any triangular planes
    • Often used in reverse engineering of physical models.
  • Decomposition
    • Similar to "spatial occupancy", but the cells are neither regular, nor "prefabricated".
    • Models described this way lend themselves to FEA.
    • This is usually done after a model is made, as part of automated pre-processing for analysis software.
  • Feature based modeling
    • Complex combinations of objects and operators are considered together as a unit which can be modified or duplicated.
    • Order of operations is kept in a history tree, and parametric changes can propagate through the tree.
  • Parametric modeling
    • Attributes of features are parameterized, giving them labels rather than only giving them fixed numeric dimensions, and relationships between parameters in the entire model are tracked, to make changing numeric values of parameters easier.
    • Almost always combined with features, giving parametric feature based modeling.

[edit] History

Solid modeling has to be seen in context of the whole history of CAD, the key milestones being the development of Romulus which went on to influence the development of Parasolid and ACIS and thus the mid-range Windows based feature modelers such as IronCAD, Alibre Design, SolidWorks, and Solid Edge and the arrival of parametric solid models system like T-Flex and Pro/ENGINEER.

[edit] Practical applications

[edit] Parametric Solid modeling CAD

Solid modelers have become commonplace in engineering departments in the last ten years due to faster PCs and competitive software pricing. They are the workhorse of machine designers.

Solid modeling software creates a virtual 3D representation of components for machine design and analysis. Interface with the human operator is highly optimized and includes programmable macros, keyboard shortcuts and dynamic model manipulation. The ability to dynamically re-orient the model, in real-time shaded 3-D, is emphasized and helps the designer maintain a mental 3-D image.

Design work on components is usually done within context of the whole product using assembly modeling methods.

A solid model generally consists of a group of features, added one at a time, until the model is complete. Engineering solid models are built mostly with sketcher-based features; 2-D sketches that are swept along a path to become 3-D. These may be cuts, or extrusions for example.

Another type of modeling technique is 'surfacing' (Freeform surface modeling). Here, surfaces are defined, trimmed and merged, and filled to make solid. The surfaces are usually defined with datum curves in space and a variety of complex commands. Surfacing is more difficult, but better applicable to some manufacturing techniques, like injection molding. Solid models for injection molded parts usually have both surfacing and sketcher based features.

Engineering drawings are created semi-automatically and reference the solid models.

The learning curve for these software packages is steep, but a fluent machine designer who can master these software packages is highly productive.

The modeling of solids is only the minimum requirement of a CAD system’s capabilities.

Parametric modeling uses parameters to define a model (dimensions, for example). The parameter may be modified later, and the model will update to reflect the modification. Typically, there is a relationship between parts, assemblies, and drawings. A part consists of multiple features, and an assembly consists of multiple parts. Drawings can be made from either parts or assemblies.

Example: A shaft is created by extruding a circle 100 mm. A hub is assembled to the end of the shaft. Later, the shaft is modified to be 200 mm long (click on the shaft, select the length dimension, modify to 200). When the model is updated the shaft will be 200 mm long, the hub will relocate to the end of the shaft to which it was assembled, and the engineering drawings and mass properties will reflect all changes automatically.

Examples of parameters are: dimensions used to create model features, material density, formulas to describe swept features, imported data (that describe a reference surface, for example).

Related to parameters, but slightly different are Constraints. Constraints are relationships between entities that make up a particular shape. For a window, the sides might be defined as being parallel, and of the same length.

Parametric modeling is obvious and intuitive. But for the first three decades of CAD this was not the case. Modification meant re-draw, or add a new cut or protrusion on top of old ones. Dimensions on engineering drawings were created, instead of shown.

Parametric modeling is very powerful, but requires more skill in model creation. A complicated model for an injection molded part may have a thousand features, and modifying an early feature may cause later features to fail. Skillfully created parametric models are easier to maintain and modify.

Parametric modeling also lends itself to data re-use. A whole family of capscrews can be contained in one model, for example.

[edit] Entertainment

Animation of a computer generated character is an example of parametric modeling. Jar Jar Binks is described by parameters which locate key body positions. The model is then built off these locations. The parameters are modified, and the model rebuilt, for each frame to create animation.

[edit] Medical solid modeling

Modern computed axial tomography and magnetic resonance imaging scanners can construct solid models of interior body features.

Uses of medical solid modeling;

  • Visualization
  • Visualization of specific body tissues (just blood vessels and tumor, for example)
  • Creating solid model data for rapid prototyping (to aid surgeons preparing for difficult surgeries, for example)
  • Combining medical solid models with CAD solid modeling (design of hip replacement parts, for example)

[edit] See also

In other languages