Shooting method
From Wikipedia, the free encyclopedia
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to the solution of an initial value problem. The following exposition may be clarified by this illustration of the shooting method.
For a boundary value problem of a second-order ordinary differential equation, the method is stated as follows. Let
be the boundary value problem. Let y(t1; a) denote the solution of the initial value problem
Define the function F(a) as the difference between y(t1; a) and the specified boundary value y1.
If the boundary value problem has a solution, then F has a root, and that root is just the value of y'(t0) which yields a solution y(t) of the boundary value problem.
The usual methods for finding roots may be employed here, such as the bisection method or Newton's method.
Contents |
[edit] Linear shooting method
The boundary value problem is linear if f has the form
In this case, the solution to the boundary value problem is usually given by:
where y(1)(t) is the solution to the initial value problem:
and y(2)(t) is the solution to the initial value problem:
See the proof for the precise condition under which this result holds.
[edit] Example
A boundary value problem is given as follows by Stoer and Bulirsch (Section 7.3.1).
was solved for s = -1, -2, -3, ..., -100, and F(s) = w(1;s) - 1 plotted in the first figure. Inspecting the plot of F, we see that there are roots near -8 and -36. Some trajectories of w(t;s) are shown in the second figure.
Solutions of the initial value problem were computed by using the LSODE algorithm, as implemented in the mathematics package GNU Octave.
Stoer and Bulirsch state that there are two solutions, which can be found by algebraic methods. These correspond to the initial conditions w'(0) = -8 and w'(0) = -35.9 (approximately).
[edit] References
- Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. New York: Springer-Verlag, 1980. (See Section 7.3.)
[edit] External links
- Brief Description of ODEPACK (at Netlib; contains LSODE)
- Shooting method of solving boundary value problems - Notes, PPT, Maple, Mathcad, Matlab, Mathematica at Holistic Numerical Methods Institute