Semantics of logic

From Wikipedia, the free encyclopedia

Formal semantics redirects to this page. See also Formal semantics of programming languages.

The validity conditions of various sentences we may encounter in arguments will depend upon their meaning, and so conscientious logicians cannot completely avoid the need to provide some treatment of the meaning of these sentences. [This is false. The validity of an argument does not depend at all on sentence meaning. "If P, then Q. P. Therefore, Q." is a valid argument regardless of the meaning of 'P' and 'Q'.] The semantics of logic refers to the approaches that logicians have introduced to understand and determine that part of meaning in which they are interested; the logician traditionally is not interested in the sentence as uttered but in the proposition, an idealised sentence suitable for logical manipulation.

Until the advent of modern logic, Aristotle's Organon, especially On Interpretation, provided the basis for understanding the significance of logic. The introduction of quantification, needed to solve the problem of multiple generality, rendered impossible the kind of subject-predicate analysis that governed Aristotle's account, although there is a renewed interest in term logic, attempting to find calculi in the spirit of Aristotle's syllogistic but with the generality of modern logics based on the quantifier.

The main modern approaches to semantics for formal languages are the following:

  • Model-theoretic semantics is the archetype of Alfred Tarski's semantic theory of truth, based on his T-schema, and is one of the founding concepts of model theory. This is the most widespread approach, and is based on the idea that the meaning of the various parts of the propositions are given by the possible ways we can give a recursively specified group of interpretation functions from them to some predefined mathematical domains: an interpretation of first-order predicate logic is given by a mapping from terms to a universe of individuals, and a mapping from propositions to the truth values "true" and "false". Model-theoretic semantics provides the foundations for an approach to the theory of meaning known as Truth-conditional semantics, which was pioneered by Donald Davidson. Kripke semantics introduces innovations, but is broadly in the Tarskian mold.
  • Truth-value semantics (also commonly referred to as substitutional quantification) was advocated by Ruth Barcan Marcus for modal logics in the early 1960s and later championed by Dunn, Belnap, and Leblanc for standard first-order logic. James Garson has given some results in the areas of adequacy for intensional logics outfitted with such a semantics. The truth conditions for quantified formulas are given purely in terms of truth with no appeal to domains whatsoever (and hence its name truth-value semantics).
  • Probabilistic semantics originated from H. Field and has been shown equivalent to and a natural generalization of truth-value semantics. Like truth-value semantics, it is also non-referential in nature.


In other languages