Sedenion

From Wikipedia, the free encyclopedia

Sedenions form a 16-dimensional algebra over the reals. The set of sedenions is denoted as \mathbb{S}. Two types are currently known:

  1. Sedenions obtained by applying the Cayley-Dickson construction
  2. Conic sedenions (or M-algebra) from hypernumber arithmetics.

Contents

[edit] Cayley-Dickson Sedenions

[edit] Arithmetic

Like (Cayley-Dickson) octonions, multiplication of Cayley-Dickson sedenions is neither commutative nor associative. But in contrast to the octonions, the sedenions do not even have the property of being alternative. They do, however, have the property of being power-associative.

Every sedenion is a real linear combination of the unit sedenions 1, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 and e15, which form a basis of the vector space of sedenions.

The sedenions have a multiplicative identity element 1 and multiplicative inverses, but they are not a division algebra. This is because they have zero divisors; this means that two non-zero numbers can be multiplied to obtain a zero result: a trivial example is (e3 + e10)*(e6 - e15). All hypercomplex number systems based on the Cayley-Dickson construction from sedenions on contain zero divisors.

The multiplication table of these unit sedenions looks as follows:

× 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
1 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 e1 -1 e3 -e2 e5 -e4 -e7 e6 e9 -e8 -e11 e10 -e13 e12 e15 -e14
e2 e2 -e3 -1 e1 e6 e7 -e4 -e5 e10 e11 -e8 -e9 -e14 -e15 e12 e13
e3 e3 e2 -e1 -1 e7 -e6 e5 -e4 e11 -e10 e9 -e8 -e15 e14 -e13 e12
e4 e4 -e5 -e6 -e7 -1 e1 e2 e3 e12 e13 e14 e15 -e8 -e9 -e10 -e11
e5 e5 e4 -e7 e6 -e1 -1 -e3 e2 e13 -e12 e15 -e14 e9 -e8 e11 -e10
e6 e6 e7 e4 -e5 -e2 e3 -1 -e1 e14 -e15 -e12 e13 e10 -e11 -e8 e9
e7 e7 -e6 e5 e4 -e3 -e2 e1 -1 e15 e14 -e13 -e12 e11 e10 -e9 -e8
e8 e8 -e9 -e10 -e11 -e12 -e13 -e14 -e15 -1 e1 e2 e3 e4 e5 e6 e7
e9 e9 e8 -e11 e10 -e13 e12 e15 -e14 -e1 -1 -e3 e2 -e5 e4 e7 -e6
e10 e10 e11 e8 -e9 -e14 -e15 e12 e13 -e2 e3 -1 -e1 -e6 -e7 e4 e5
e11 e11 -e10 e9 e8 -e15 e14 -e13 e12 -e3 -e2 e1 -1 -e7 e6 -e5 e4
e12 e12 e13 e14 e15 e8 -e9 -e10 -e11 -e4 e5 e6 e7 -1 -e1 -e2 -e3
e13 e13 -e12 e15 -e14 e9 e8 e11 -e10 -e5 -e4 e7 -e6 e1 -1 e3 -e2
e14 e14 -e15 -e12 e13 e10 -e11 e8 e9 -e6 -e7 -e4 e5 e2 -e3 -1 e1
e15 e15 e14 -e13 -e12 e11 e10 -e9 e8 -e7 e6 -e5 -e4 e3 e2 -e1 -1

[edit] Further reading

  • Imaeda, K., Imaeda, M.: Sedenions: algebra and analysis, Applied Mathematics and Computation, 115:77-88 (2000)

[edit] Conic sedenions / 16-dim. M-algebra

[edit] Arithmetic

In contrast to Cayley-Dickson sedenions, which are built on unity (1) and 15 roots of negative unity (-1), conic sedenions are built on 8 square roots of positive and negative unity each. They share non-commutativity and non-associativity with Cayley-Dickson sedenion ("circular sedenion") arithmetic, however, conic sedenions are modular, alternative, and flexible.

Conic sedenions contain both (circular) octonions, conic octonion, and hyperbolic octonion subalgebras. Hyperbolic octonions are computationally equivalent to split-octonions.

Conic sedenions contain idempotents, nilpotents and zero divisors. With the exception of its nilpotents and zero, the arithmetic is closed with respect to the power-of and logarithm operations.

[edit] Further reading

For a general overview on hypernumbers see e.g. http://www.kevincarmody.com/math/hypernumbers.html .

  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions, Applied Mathematics and Computation 28:47-72 (1988)
  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions - Further results, Applied Mathematics and Computation, 84:27-47 (1997)
  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions - Part III, Online at http://www.kevincarmody.com/math/sedenions3.pdf (2006)

[edit] See also