Secular equilibrium

From Wikipedia, the free encyclopedia

In nuclear physics, secular equilibrium is a situation in which the quantity of a radioactive isotope remains constant because its production rate (due, e.g., to decay of a parent isotope) is equal to its decay rate.

[edit] Secular equilibrium in radioactive decay

Secular equilibrium can only occur in a radioactive decay chain if the half-life of the daughter isotope B is much shorter than the half-life of the parent isotope A. In such a situation, the decay rate of A, and hence the production rate of B, is approximately constant, because the half-life of A is very long compared to the timescales being considered. The quantity of isotope B builds up until the number of B atoms decaying per unit time becomes equal to the number being produced per unit time; the quantity of isotope B then reaches a constant, equilibrium value.

The quantity of isotope B when secular equilibrium is reached is determined by the quantity of its parent A and the half-lives of the two isotopes. This can be seen from the time rate of change of the number of atoms of isotope B:

\frac{dN_B}{dt} = \lambda_A N_A - \lambda_B N_B

where λA and λB are the decay constants of isotopes A and B, related to their half-lives t1/2 by λ = ln(2) / t1 / 2, and NA and NB are the number of atoms of A and B at a given time.

Secular equilibrium occurs when dNB / dt = 0, or

N_B = \frac{\lambda_A}{\lambda_B}N_A

Over long enough times, comparable to the half-life of isotope A, the secular equilibrium is only approximate; NA decays away according to

N_A(t) = N_A(0) e^{-\lambda_A t},

and the "equilibrium" quantity of isotope B declines in turn. For times short compared to the half-life of A, \lambda_A t \ll 1 and the exponential can be approximated as 1.

[edit] References

IUPAC definition

EPA definition [1]