Image:Schwarz-Christoffel transformation.png

From Wikipedia, the free encyclopedia

Schwarz-Christoffel_transformation.png (7KB, MIME type: image/png)

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
This Math image (or all images in this article or category) should be recreated using vector graphics as an SVG file. This has several advantages; see Commons:Images for cleanup for more information. If an SVG form of this image is already available, please upload it. After uploading an SVG, replace this template with template {{SupersededSVG|new image name.svg}} in this image.

Česky | Deutsch | English | Español | Français | Italiano | Nederlands | Polski | Português | Русский | العربية | +/-

Schwarz-Christoffel mapping of the semi-infinite strip to the upper half-plane.

Public domain This file has been released into the public domain by the copyright holder, its copyright has expired, or it is ineligible for copyright. This applies worldwide.
Warning sign Note: This tag is obsolete! Don't use this generic template - please use instead:
  • {{PD-old}} (for works out of copyright where the author has been dead for over 70 years),
  • {{PD-Art}} (for photos of old paintings and art out of copyright),
  • {{PD-ineligible}} (for trivial work),
  • {{PD-USGov}} (for work by the U.S. federal government),
  • {{PD-self}} (if the uploader and creator releases the rights),
  • {{PD-user|user}} (if another user released his/her rights), or {{Copyrighted free use}}.
  • {{PD-author|Author's name}} - for works released into the public domain by non-Wikimedia users.
  • If the work is PD for another reason, check the copyright tag page or use {{PD-because|reason}}.

العربية | česky | Deutsch | English | Español | Türkçe | Français | हिन्दी | Italiano | 日本語 | Norsk (nynorsk) | Português | Русский | po slovensky | slovenščina | Српски | Polski | 简体中文 | +/-


This image was created by the following Matlab file:

zs = [ linspace(0.2, 0.2+1i)
       linspace(0.4, 0.4+1i)
       linspace(0.6, 0.6+1i)
       linspace(0.8, 0.8+1i)
       linspace(1.0, 1.0+1i) 
       linspace(0.2i, 1.2+0.2i)
       linspace(0.4i, 1.2+0.4i)
       linspace(0.6i, 1.2+0.6i)
       linspace(0.8i, 1.2+0.8i) ];
zs = transpose(zs);

zs2 = [ linspace(0, 0+1i)
        linspace(0i, 1.2+0i)
        linspace(1i, 1.2+1i) ];
zs2 = transpose(zs2);

zetas  = - 1/2 + 1/2*cosh(pi*zs);
zetas2 = - 1/2 + 1/2*cosh(pi*zs2);

clf;
subplot('position', [0 0 0.4 0.4]);
hold on;
patch([-1 2 2 -1], [-1 -1 0 0], [0.7 0.7 0.7], 'EdgeColor', 'none');
patch([-1 2 2 -1], [1 1 2 2], [0.7 0.7 0.7], 'EdgeColor', 'none');
patch([-1 0 0 -1], [-1 -1 2 2], [0.7 0.7 0.7], 'EdgeColor', 'none');
plot(real(zs), imag(zs), 'r');
plot(real(zs2), imag(zs2), 'k', 'LineWidth', 2);
plot([0 0], [0 1], 'ok', 'MarkerSize', 7, 'MarkerFaceColor', 'black');
axis([-0.2 1.2 -0.2 1.2]);
axis off;

annotation('arrow', [0.55 0.45], [0.18 0.18]);
annotation('textbox', [0.45 0.18 0.1 0.1], 'String', '\itf', ...
           'EdgeColor', 'none', 'HorizontalAlignment', 'center', ...
           'FontSize', 20);

subplot('position', [0.6 0 0.4 0.4]);
hold on;
patch([-3 2 2 -3], [-1 -1 0 0], [0.7 0.7 0.7], 'EdgeColor', 'none');
plot(real(zetas), imag(zetas), 'r');
plot(real(zetas2), imag(zetas2), 'k', 'LineWidth', 2);
plot([-1 0], [0 0], 'ok', 'MarkerSize', 7, 'MarkerFaceColor', 'black');
axis([-2.5 1.5 -0.3 2]);
axis off;
       
print -depsc 'sc.eps';

The resulting EPS file was transformed to PNG by the following commands:

epstopdf sc.eps
convert sc.pdf sc.png
mv sc.png Schwarz-Christoffel_transformation.png

The following pages on the English Wikipedia link to this file (pages on other projects are not listed):