User:Salix alba/Jonathan Bowers
From Wikipedia, the free encyclopedia
Jonathan Bowers (November 27, 1969) is an amateur mathematician known for his work on polychora (higher-dimensional analogues of polyhedra), and on the representation of very large numbers. He sometimes refers to himself as Hedrondude or Dimension dude.
Contents |
[edit] Polychora
Bowers is one of the participants in the Uniform Polychora Project, an attempt to name higher-dimensional polychora, higher dimensional analogues of uniform polyhedra. He independently began his search for polychora in 1990. Circa 1993, he invented his short names for the uniform polyhedra and polychora, which have come to be known as the Bowers style acronyms (or pet name). In 1997, he contacted others who are also interested in the subject, such as Magnus Wenninger, Vincent Matsko, and George Olshevsky.
[edit] Illion group
Bowers has also invented names for very large numbers that extend the -illion family in names of large numbers.
Name | Short scale value |
---|---|
Vigintillion | 1063, not coined by Bowers. |
Trigintillion | 1093, not coined by Bowers. |
Googol | 10100, not coined by Bowers. |
Quadragintillion | 10123 |
Quinquagintillion | 10153 |
Sexagintillion | 10183 |
Septuagintillion | 10213 |
Octogintillion | 10243 |
Nonagintillion | 10273 |
Centillion | 10303, not coined by Bowers. |
Cenuntillion | 10306 |
Duocentillion | 10309 |
Centretillion | 10312 |
Ducentillion | 10603 |
Trecentillion | 10903 |
Quadringentillion | 101203 |
Quingentillion | 101503 |
Sescentillion | 101803 |
Septingentillion | 102103 |
Octingentillion | 102403 |
Nongentillion | 102703 |
Millillion | |
Platillion | 106000 |
Myrillion | 1030003 |
Micrillion | |
Nanillion | |
Picillion | |
Femtillion | |
Attillion | |
Zeptillion | |
Yoctillion | |
Xonillion | |
Vecillion | |
Mecillion | |
Duecillion | |
Trecillion | |
Tetrecillion | |
Pentecillion | |
Hexecillion | |
Heptecillion | |
Octecillion | |
Ennecillion | |
Icosillion | |
Triacontillion | |
Googolplex | , not coined by Bowers. |
Tetracontillion | |
Pentacontillion | |
Hexacontillion | |
Heptacontillion | |
Octacontillion | |
Ennacontillion | |
Hectillion | |
Killillion | |
Megillion | |
Gigillion | |
Terillion | |
Petillion | |
Exillion | |
Zettillion | |
Yottillion | |
Xennillion | |
Vekillion | |
Mekillion | |
Duekillion | |
Trekillion | |
Tetrekillion | |
Pentekillion | |
Hexekillion | |
Heptekillion | |
Octekillion | |
Ennekillion | |
Twentillion | |
Triatwentillion | |
Icterillion | 10^(3x10^(3x10^72) +3) |
Icpetillion | 10^(3x10^(3x10^75) +3) |
Ikectillion | 10^(3x10^(3x10^78) +3) |
Iczetillion | 10^(3x10^(3x10^81) +3) |
Ikyotillion | 10^(3x10^(3x10^84) +3) |
Icxenillion | 10^(3x10^(3x10^87) +3) |
Thirtillion | |
Googolduplex or Googolplexian | , not coined by Bowers. |
Fortillion | |
Fiftillion | |
Sixtillion | |
Seventillion | |
Eightillion | |
Nintillion | |
Hundrillion | |
Botillion | 10^(3x10^(3x10^600) +3) |
Trotillion | 10^(3x10^(3x10^900) +3) |
Totillion | 10^(3x10^(3x10^1200) +3) |
Potillion | 10^(3x10^(3x10^1500) +3) |
Exotillion | 10^(3x10^(3x10^1800) +3) |
Zotillion | 10^(3x10^(3x10^2100) +3) |
Yootillion | 10^(3x10^(3x10^2400) +3) |
Notillion | 10^(3x10^(3x10^2700) +3) |
Thousillion | |
Dalillion | 10^(3x10^(3x10^6000) +3) |
Tralillion | 10^(3x10^(3x10^9000) +3) |
Talillion | 10^(3x10^(3x10^12,000) +3) |
Palillion | 10^(3x10^(3x10^15,000) +3) |
Exalillion | 10^(3x10^(3x10^18,000) +3) |
Zalillion | 10^(3x10^(3x10^21,000) +3) |
Yalillion | 10^(3x10^(3x10^24,000) +3) |
Nalillion | 10^(3x10^(3x10^27,000) +3) |
Manillion | 10^(3*10^ (3*10^30,000) +3) |
Lakhillion | 10^(3*10^ (3*10^300,000) +3) |
Mejillion | 10^(3x10^(3x10^3,000,000) +3) |
Crorillion | 10^(3*10^ (3*10^30,000,000) +3) |
Awkillion | 10^(3*10^ (3*10^300,000,000) +3) |
Gijillion | 10^(3x10^(3x10^3,000,000,000) +3) |
Bentrizillion | 10^(6*10^(6*10^(6*10^6billion))) |
Astillion | 10^(3x10^(3x10^3trillion) +3) |
Lunillion | 10^(3x10^(3x10^3quadrillion) +3) |
Fermillion | 10^(3x10^(3x10^3quintillion) +3) |
Jovillion | 10^(3x10^(3x10^3sextillion) +3) |
Solillion | 10^(3x10^(3x10^3septillion) +3) |
Betillion | 10^(3x10^(3x10^3octillion) +3) |
Glocillion | 10^(3x10^(3x10^3nonillion) +3) |
Gaxillion | 10^(3x10^(3x10^3decillion) +3) |
Supillion | 10^(3x10^(3x10^3undecillion) +3) |
Versillion | 10^(3x10^(3x10^3dodecillion) +3) |
Multillion | 10^(3x10^(3x10^3tredecillion) +3) |
Googoltriplex | 10^10^10^10^100 |
Googolquadriplex | 10^10^10^10^10^100 |
Googolquinplex | 10^10^10^10^10^10^100 |
Googolsexplex | 10^10^10^10^10^10^10^100 |
Googolseptaplex | 10^10^10^10^10^10^10^10^100 |
Googoloctaplex | 10^10^10^10^10^10^10^10^10^100 |
Googolnonaplex | 10^10^10^10^10^10^10^10^10^10^100 |
Googoldecaplex | 10^10^10^10^10^10^10^10^10^10^10^100 |
[edit] Very large numbers
Bowers has proposed a series of names (including giggol, gaggol, geegol, goggol, tridecal, tetratri, dutritri, xappol, dimendecal, gongulus, trimentri, goppatoth, golapulus, golapulusplex, golapulusplux, big boowa and guapamonga) for extremely Large numbers, which he terms infinity scrapers (a pun on skyscraper), many of which are so large that they can only be expressed using a special set of extended mathematical notations which he has devised.
These notations are very similar to the hyper operators and Conway chained arrow notation, and rely on the tetration operator , and its higher order analogues: pentation, sexation, heptation. Some examples are:
- a tetrated to b.
- - a pentated to b - a tetrated to itself b times.
[edit] Googol, giggol and gaggol groups
Jonathan Bowers defines the googol, giggol, and gaggol groups as being lower than the infinity scrapers. Here's a list of some numbers in these groups:
Name | Value |
---|---|
Googol | 10^100: "roughly" 10 tetrated to 2 = 10^10 |
Googolplex | 10^10^100: roughly 10 tetrated to 3 = 10^(10^10) |
Googolduplex or Googolplexian | 10^10^10^100: roughly 10 tetrated to 4 |
Googoltriplex | 10^10^10^10^100: roughly 10 tetrated to 5 |
Googolquadriplex | 10^10^10^10^10^100: roughly 10 tetrated to 6 |
Googolquinplex | 10^10^10^10^10^10^100: roughly 10 tetrated to 7 |
Giggol | {10,100,4} = 10 {4} 100: 10 tetrated to 100 |
Mega | roughly 10 tetrated to 258 |
Giggolplex | 10 {4} giggol: 10 tetrated to giggol |
Tripent | {5,5,5} = 5 {5} 5 = 5 {4} 5 {4} 5 {4} 5 {4} 5: 5 pentated to 5 |
Megaston | roughly 10 pentated to 11 |
Gaggol | {10,100,5} = 10 {5} 100: 10 pentated to 100 |
Gaggolplex | 10 {5} gaggol = 10 {5} 10 {5} 100: 10 pentated to gaggol |
Geegol | {10,100,6}=10 {6} 100 |
Geegolplex | {10,geegol, 6} |
Trisept | {7,7,7} = 7 {7} 7 (7 heptated to 7) |
Gigol | {10,100,7} |
Gigolplex | {10,gigol,7} |
Goggol | {10,100,8} |
Goggolplex | {10,goggol,8} |
Gagol | {10,100,9} |
Gagolplex | {10,gagol,9} |
[edit] Infinity scrapers
Numbers higher than those in the Gaggol group are referred to by Jonathan Bowers as the infinity scrapers. These require four or more terms in the array notation to represent. An older notation represents four term arrays using multiple pairs of braces about the third term, thus extending the operator notation. Some of the rules for constructing these numbers include:
- - a expanded to b.
- - a expanded to itself b times.
Here's a list of the names of those numbers that are infinity scrapers:
Name | Value |
---|---|
Tridecal | {10,10,10} = 10 {10} 10 = 10 decated to 10 |
Boogol | {10,10,100} = 10 {100} 10 |
Moser's number | ... |
Boogolplex | {10,10,boogol} |
Graham's number | roughly {3, 64, 1, 2} |
Corporal | {10,100,1,2} |
Corporalplex | {10,corporal,1,2} |
Grand Tridecal | {10,10,10,2} |
Biggol | {10,10,100,2} |
Biggolplex | {10,10,biggol,2} |
Baggol | {10,10,100,3}, |
Baggolplex | {10,10,baggol,3} |
Beegol | {10,10,100,4} |
Beegolplex | {10,10,beegol,4} |
Bigol | {10,10,100,5} |
Boggol | {10,10,100,6} |
Bagol | {10,10,100,7} |
Supertet | {4,4,4,4} |
Tetratri | {3,3,3,3} |
General | {10,10,10,10} |
Generalplex | {10,10,10,general} |
Troogol | {10,10,10,100} |
Troogolplex | {10,10,10,troogol} |
Triggol | {10,10,10,100,2} |
Triggolplex | {10,10,10,triggol,2} |
Pentatri | {3,3,3,3,3}. |
Traggol | {10,10,10,100,3} |
Traggolplex | {10,10,10,traggol,3}. |
Treegol | {10,10,10,100,4} |
Superpent | {5,5,5,5,5} |
Trigol | {10,10,10,100,5} |
Troggol | {10,10,10,100,6} |
Tragol | {10,10,10,100,7} |
Tragol | {10,10,10,100,7} |
Pentadecal | {10,10,10,10,10} |
Pentadecalplex | {10,10,10,10,pentadecal} |
Quadroogol | {10,10,10,10,100} |
Quadroogolplex | {10,10,10,10,quadroogol} |
Quadriggol | {10,10,10,10,100,2} |
Quadriggolplex | {10,10,10,10,quadriggol,2} |
Hexatri | {3,3,3,3,3,3}. |
Quadraggol | {10,10,10,10,100,3} |
Quadreegol | {10,10,10,10,100,4} |
Quadrigol | {10,10,10,10,100,5} |
Quadroggol | {10,10,10,10,100,6} |
Quadragol | {10,10,10,10,100,7} |
Superhex | {6,6,6,6,6,6}. |
Quintoogol | {10,10,10,10,10,100} |
Quintoogolplex | {10,10,10,10,10,quintoogol} |
Pentatri | {3,3,3,3,3} |
Hexatri | {3,3,3,3,3,3} |
Hexadecal | {10,10,10,10,10,10} |
Hexadecalplex | {10,10,10,10,10,hexadecal} |
Quintaggol | {10,10,10,10,10,100,3} |
Quinteegol | {10,10,10,10,10,100,4} |
Quintigol | {10,10,10,10,10,100,5} |
Heptatri | {3,3,3,3,3,3,3} |
Supersept | {7,7,7,7,7,7,7} |
Heptadecal | {10,10,10,10,10,10,10} |
Octadecal | {10,10,10,10,10,10,10,10} |
Ennadecal | {10,10,10,10,10,10,10,10,10} |
Superoct | {8,8,8,8,8,8,8,8} |
Superenn | {9,9,9,9,9,9,9,9,9} |
Sextoogol | {10,10,10,10,10,10,100} |
Septoogol | {10,10,10,10,10,10,10,100} |
Octoogol | {10,10,10,10,10,10,10,10,100} |
Iteral | {10,10,10,10,10,10,10,10,10,10} |
Ultatri | {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} |
Iteralplex | {10,10,10,10,10,10,...........,10,10,10} (iteral 10's) |
Goobol | {10,100 (1) 2} = {10,10,10,.....,10} - has 100 10's. |
Dupertri | {3,tritri (1) 2}. |
Iteralplex) | {10,iteral (1) 2} |
Goobolplex | {10,goobol (1) 2} and truperdecal = {10,duperdecal (1) 2} |
Truperdecal | {10,duperdecal (1) 2} |
Quadruperdecal | {10,truperdecal (1) 2} |
Gibbol | {10,100,2 (1) 2} |
Latri | {3,3,3 (1) 2} |
Gabbol | {10,100,3 (1) 2} |
Geebol | {10,100,4 (1) 2} |
Gibol | {10,100,5 (1) 2} |
Gobbol | {10,100,6 (1) 2} |
Gabol | {10,100,7 (1) 2} |
Boobol | {10,10,100,1 (1) 2} where n goes from 1 to 7 |
Bibbol | {10,10,100,2 (1) 2} |
Babbol | {10,10,100,3 (1) 2} |
Beebol | {10,10,100,4 (1) 2} |
Bibol | {10,10,100,5 (1) 2} |
Bobbol | {10,10,100,6 (1) 2} |
Babol | {10,10,100,7 (1) 2} |
Troobol | {10,10,10,100,1 (1) 2} |
Tribbol | {10,10,10,100,2 (1) 2} |
Treebol | {10,10,10,100,3 (1) 2} |
Tribol | {10,10,10,100,5 (1) 2} |
Trobbol | {10,10,10,100,6 (1) 2} |
Trabol | {10,10,10,100,7 (1) 2} |
Quadroobol | {10,10,10,10,100,1 (1) 2} |
Quadribbol | {10,10,10,10,100,2 (1) 2} |
Quadrabbol | {10,10,10,10,100,3 (1) 2} |
Quadreebol | {10,10,10,10,100,4 (1) 2} |
Quadribol | {10,10,10,10,100,5 (1) 2} |
Quadrobbol | {10,10,10,10,100,6 (1) 2} |
Quadrabol | {10,10,10,10,100,7 (1) 2} |
Quintoobol | {10,10,10,10,10,100,1 (1) 2} |
Quintibbol | {10,10,10,10,10,100,2 (1) 2} |
Quintabbol | {10,10,10,10,10,100,3 (1) 2} |
Quinteebol | {10,10,10,10,10,100,4 (1) 2} |
Quintibol | {10,10,10,10,10,100,5 (1) 2} |
Quintobbol | {10,10,10,10,10,100,6 (1) 2} |
Quintabol | {10,10,10,10,10,100,7 (1) 2} |
Gootrol | {10,100 (1) 3} |
Bootrol | {10,10,100 (1) 3} |
trootrol | {10,10,10,100 (1) 3} |
quadrootrol | {10,10,10,10,100 (1) 3}. |
Gooquadrol | {10,100 (1) 4} |
Booquadrol | {10,10,100 (1) 4} |
Gitrol | {10,100,2 (1) 3} |
Gatrol | {10,100,3 (1) 3} |
Geetrol | {10,100,4 (1) 3} |
Gietrol | {10,100,5 (1) 3} |
Gotrol | {10,100,6 (1) 3} |
Gaitrol | {10,100,7 (1) 3} |
Quadreequadrol | {10,10,10,10,100 (1) 4} |
Gooquintol | {10,100 (1) 5} |
The following numbers require an extended array notation to define. These are defined recursively, using rules such as:
- with a repeated b times.
- with a repeated b times.
The last few numbers from the previous table are repeated to establish the notation.
Name | Value |
---|---|
Emperal | |
Emperalplex | |
Gossol | {10,10 (1) 100 |
Gossolplex | {10,10 (1) gossol} |
Gissol | {10,10 (1) 100,2} |
Gassol | {10,10 (1) 100,3} |
Geesol | {10,10 (1) 100,4} |
Gussol | {10,10 (1) 100,5} |
Hyperal | |
Hyperalplex | |
Mossol | {10,10 (1) 10,100} |
Mossolplex | {10,10 (1) 10,mossol} |
Missol | {10,10 (1) 10,100,2} |
Massol | {10,10 (1) 10,100,3} |
Meesol | {10,10 (1) 10,100,4} |
Mussol | {10,10 (1) 10,100,5} |
Bossol | {10,10 (1) 10,10,100,1} |
Bissol | {10,10 (1) 10,10,100,2} |
Bassol | {10,10 (1) 10,10,100,3} |
Beesol | {10,10 (1) 10,10,100,4} |
Bussol | {10,10 (1) 10,10,100,5} |
Trossol | {10,10 (1) 10,10,10,100,1} |
Trissol | {10,10 (1) 10,10,10,100,2} |
Trassol | {10,10 (1) 10,10,10,100,3} |
Treesol | {10,10 (1) 10,10,10,100,4} |
Trussol | {10,10 (1) 10,10,10,100,5} |
Diteral | {10,10 (1)(1) 2} = {10,10,10,10,10,10,10,10,10,10 (1) 10,10,10,10,10,10,10,10,10,10} |
Diteralplex | Diteralplex = {10,diteral (1)(1) 2} = {10,10,......,10 (1) 10,10,......,10} - diteral 10's in each row. |
Dubol | {10,100 (1)(1) 2} |
Dutrol | {10,100 (1)(1) 3} |
Duquadrol | {10,100 (1)(1) 4} |
Admiral | {10,10 (1)(1) 10} |
Dossol | {10,10 (1)(1) 100} |
Dossolplex = {10,10 (1)(1) dossol}. | |
Dutritri | |
Dutridecal | |
Xappol | 10 by 10 array of 10's |
Xappolplex | xappol by xappol array of 10's |
Grand xappol | {10,10 (2) 3} |
Dimentri | 3 x 3 x 3 array of 3's |
Colossal | 10 x 10 x 10 array of 10's |
Colossalplex | colossal x colossal x colossal array of 10's |
Terossol | 10^4 & 10 = {10,10 (4) 2} - which is a 10 by 10 by 10 by 10 tesseract of tens. |
Terossolplex | terossol^4 & 10 |
Petossol | a size 10 penteract of tens - a 10^5 array of tens that is. |
Petossolplex | a size petossol penteract of tens. |
Ectossol | the value of a size 10 hexeract (six dimensional cube) of tens. |
Ectossolplex | an ectossol size hexeract of tens. |
Zettossol | 10^n & 10 = {10,10 (7) 2} |
Yottossol | 10^n & 10 = {10,10 (8) 2} |
Xennossol | 10^n & 10 = {10,10 (9) 2} |
Dimendecal | 10x10x10x10x10x10x10x10x10x10 array of 10's |
Gongulus | 100 dimensional array of 10's (10^100 array that is) |
Gongulusplex | gongulus dimensional array of 10's (10^gongulus array) |
Gingulus | {10,100 (0,2) 2} = 100^100 array of D's where D is a 100^100 array of 10's |
Trilatri | {3,3 (0,3) 2} = {A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (2,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (2,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A (1,2) A (0,2) A (0,2) A} where A represents "3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (2,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (2,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3 (1,1) 3^3 & 3 (0,1) 3^3 & 3 (0,1) 3^3 & 3" - this is a size 3 - x^3x array of 3's. |
Gangulus | {10,100 (0,3) 2} |
Gowngulus | {10,100 (0,5) 2} |
Gungulus | {10,100 (0,6) 2} - which is a size 100 - x^6x array of 10's. |
Bongulus | {10,100 (0,0,1) 2) |
Bingulus | {10,100 (0,0,2) 2) |
Bangulus | {10,100 (0,0,1) 3) |
Dulatri | (3^3)^2 array of 3's |
Trimentri | 3^(3^3) array of 3's |
Trongulus | {10,100 (0,0,0,1) 2} |
Quadrongulus | {10,100 (0,0,0,0,1) 2} |
Goplexulus | {10,100 (0,0,0,.......,0,0,1) 2} - where there are 100 0's - this is a size 100 - x^x^100 array of 10's |
Goduplexulus | {10,100 ((100)1) 2} which is a size 100 - x^x^x^100 array of 10's - following is another trimensional array example: {3,3 (4,2 (1) 6,7 (1) 7,8 (2) 7,8,5) 2} - the (4,2 (1) 6....8,5) represents separations between two x^(4+2x+ (6+7x)x^x + (7+8x)x^2x + (7+8x+5x^2)x^x^2) structures. |
Goppatoth | 10 tetrated to 100 array of 10's |
Goppatothplex | {10,goppatoth,4} array of 10's |
Gotriplexulus | {10,100 ((0,0,0,....,0,0,1)1) 2 - with 100 0's - this is a size 100 - x^x^x^x^100 array of 10's. |
Triakulus | {3,3,3} & 3 = 3^^^3 array of 3's |
Kungulus | {10,100,3} & 10 = 10^^^100 array of tens. |
Kungulusplex | {10,kungulus,3) & 10 = 10^^^kungulus array of tens. |
Quadrunculus | {10,100,4} & 10 = 10^^^^100 array of tens |
Tridecatrix | {10,10,10} & 10 = 3 & 10 & 10 = 10^^^^^^^^^^10 array of tens |
Humongulus | {10,10,100} & 10 = 10^^^^^^^^^^^^`````^^^^10 (100 ^'s) array of tens. |
Tridecatrix | {10,10,10} array of 10's |
Golapulus | a "10^100 array of 10's" array of 10's. |
Golapulusplex | a * "10^100 array of tens" array of tens* array of tens. |
Golapulusplux | X{10,100,3},golapulusX |
Big boowa | X3, {X3,dutritriX, 2} X |
Great big boowa | X3,3,3X |
Grand boowa | {3,3,big boowa / 2} |
Super gongulus | a 10^100 exploded array of 10's (within X X that is!!) |
Wompogulus | 10^10 "100th level" exploded array of 10's |
Wompogulusplex | 10^10 "wompogulusth level" exploded array of 10's!! |
Guapamonga | 10^100 array of B's within "# #" |
Guapamongaplex | 10^100 array of B's within guapamonga-level "# #" |
Big hoss | {100,100 //////.......///// 2} - with 100 /'s. |
Great big hoss | {big hoss, big hoss /////.......///// 2} - with big hoss /'s |
Meameamealokkapoowa | {Not Defined Yet} |
Meameamealokkapoowa Oompa | {Not Defined Yet} |
[edit] See also
- Large numbers
- Names of large numbers
- Knuth's up-arrow notation
- Conway chained arrow notation
- Uniform polychoron
[edit] External links
- Jonathan's home page
- illions
- infinity scrapers
- array notation
- Robert Munafo's Large Numbers page, pages 3 and 4 discuss Bowers work.