Robot welding
From Wikipedia, the free encyclopedia
Robot welding is the use of mechanized programmable tools (robots), which completely automate a welding process by both performing the weld and handling the part. Processes like gas metal arc welding, while often automated, are not necessarily equivalent to robot welding, since a human operator sometimes prepares the materials to be welded. Robot welding is commonly used for resistance spot welding and arc welding in high production applications, such as the automotive industry.
Robot welding is a relatively new application of robotics, even though robots were first introduced in United States industry during the 1960s. The use of robots in welding did not take off until the 1980s, when the automotive industry began using robots extensively for spot welding. Since then, both the number of robots used in industry and the number of their appliactions has grown greatly. Cary and Helzer suggest that, as of 2005, over 120,000 robots are used in North American industry, with about half of them pertaining to welding. Growth is primarily limited by the high equipment cost, and the resulting necessity of using it only in high production applications.
Robot arc welding has begun growing quickly just recently, but already it commands about 20% of industrial robot applications. The major components of arc welding robots are the manipulator or the mechanical unit and the controller, which acts as the robot's "brain". The manipulator is what makes the robot move, and the design of these systems can be categorized into several common types, such as the SCARA robot and cartesian coordinate robot, which use different coordinate systems to direct the arms of the machine.
[edit] References
- Cary, Howard B. and Scott C. Helzer (2005). Modern Welding Technology. Upper Saddle River, New Jersey: Pearson Education. ISBN 0-13-113029-3.
[edit] External links
Metalworking
|
|
---|---|
Welding | |
Arc welding: Shielded metal (MMA) | Gas metal (MIG) | Flux-cored | Submerged | Gas tungsten (TIG) | Plasma | |
Other processes: Oxyfuel | Resistance | Spot | Forge | Ultrasonic | Electron beam | Laser beam | |
Equipment: Power supply | Electrode | Filler metal | Shielding gas | Robot | Helmet | |
Related: Heat-affected zone | Weldability | Residual stress | Arc eye | Underwater welding | |
See also: Brazing | Soldering | Metalworking | Fabrication | Casting | Machining | Metallurgy | Jewelry |