Robert T. Jones

From Wikipedia, the free encyclopedia

Robert T. (Bob) Jones, (May 28, 1910August 11, 1999), was an aerodynamicist and aeronautical engineer for NACA and later NASA. Known at NASA as "one of the premier aeronautical engineers of the twentieth century",[1], in 1945 he formulated the swept-back wing concept, called sweep theory to reduce shockwave effects at critical mach numbers. This pioneering analytical research resulted in the basic wing design of all modern jet aircraft, and especially those which fly supersonic.

Contents

[edit] Research

At the time, Jones was a researcher at NACA's Langley Research Center in Hampton, Virginia. As a self-trained aerodynamicist and mathematician, he had built up a national, if not international, reputation through his perceptive and original work at Langley. For this work he was given the IAS Sylvanus Albert Reed Award in 1946. Jones spent much of his time at Langley working in the Stability Research Division, which pioneered many concepts that were incorporated into U.S. aircraft.

In August 1946, Jones transferred to Ames. The genius of Bob Jones seemed, in part, to lie in his remarkable ability to extract the essence of a problem and express it in understandable and useful terms. His approach to problems was always of a fundamental character and often yielded results of broad significance. In addition, Jones' wife Doris, an accomplished mathematician, also joined the Ames staff.[2].

Later, still at Ames, Jones conceived the idea of an oblique wing. His wind tunnel studies indicated that such a wing design on a supersonic transport might achieve twice the fuel economy of an aircraft with conventional wings. The concept was flight tested successfully on the NASA AD-1. This unique plane had a wing which pivoted about the fuselage, remaining perpendicular to it during slow flight and rotating to angles of up to 60 degrees as aircraft speed increased. Analytical and wind tunnel studies that Jones conducted at Ames indicated that a transport-sized oblique-wing aircraft flying at speeds of up to Mach 1.4 (1.4 times the speed of sound) would have substantially better aerodynamic performance than aircraft with conventional wings. [3] A current DARPA project that has been awarded to Northrop Grumman, called the Switchblade is being developed to provide a more efficient UAV for the Air Force.

[edit] Awards

[edit] Bibliography

  • The Minimum Drag of Thin Wings in Frictionless Flow, Journal of the Aeronautical Sciences, Feb. 1951
  • Theoretical Determination of the Minimum Drag of Airfoils at Supersonic Speeds, Journal of the Aeronautical Sciences, Dec. 1952
  • Possibilities of Efficient High Speed Transport Airplanes, Proceedings of the Conference on High-Speed Aeronautics, Polytechnic Institute of Brooklyn, Jan. 1955
  • Aerodynamic Design for Supersonic Speed, Advances in Aeronautical Sciences, Vol.1, Pergammon Press, 1959
  • With Cohen, D., High Speed Wing Theory, Princeton University Press, 1960
  • New Design Goals and a New Shape for the SST, Astronautics and Aeronautics, Dec. 1972
  • With Graham, A., and Boltz, F., An Experimental Investigation of an Oblique Wing and Body Combination at Mach Numbers Between .6 and 1.4, NASA TM X-62207, Dec. 1972
  • With Graham, A., and Boltz, F., An Experimental Investigation of Three Oblique Wing and Body Combinations at Mach Numbers Between .6 and 1.4, NASA TM X-62256, April 1973
  • With Graham, A., and Summers, J., Wind Tunnel Test of an F-8 Airplane Model Equipped with an Oblique Wing, NASA TM X-62273, June 1973
  • With Nisbet, J., Transonic Transport Wings -- Oblique or Swept? Astronautics and Aeronautics, Jan. 1974
  • With Smith, R., and Summers, J., Transonic Wind Tunnel Tests of an F-8 Airplane Model Equipped with 12 and 14-percent Thick Oblique Wings, NASA TM X-62478, Oct. 1975
  • With Smith, R., and Summers, J., Transonic Longitudinal and Lateral Control Characteristics of an F-8 Airplane Model Equipped with an Oblique Wing, NASA TM X-73103, March 1976
  • The Oblique Wing - Aircraft Design for Transonic and Low Supersonic Speeds, Acta Astronautica, Vol. 4, Pergammon Press, 1977
  • With Nisbet, J., Aeroelastic Stability and Control of an Oblique Wing, The Aeronautical Journal of the Royal Aeronautical Society, Aug. 1986
  • The Flying Wing Supersonic Transport, Aeronautical Journal, March 1991.
  • Wing Theory, Princeton University Press, 1990.

[edit] References

  1. ^ http://www.nasa.gov/centers/dryden/news/NewsReleases/2005/05-07_prt.htm
  2. ^ NASA Ames History
  3. ^ http://nix2.larc.nasa.gov/info?id=ECN-17954&orgid=7