Robert H. Goddard
From Wikipedia, the free encyclopedia
Robert Hutchings Goddard (October 5, 1882 – August 10, 1945), U.S. professor and scientist, was a pioneer of controlled, liquid-fueled rocketry. He launched the world's first liquid-fueled rocket on March 16, 1926. From 1930 to 1935 he launched rockets that attained speeds of up to 550 miles an hour. Though his work in the field was revolutionary, he was often ridiculed for his theories. He received little recognition during his own lifetime, but would eventually come to be called one of the "fathers of modern rocketry" for his life's work.
Contents |
[edit] Early life and inspiration
Robert Goddard was born in Worcester, Massachusetts to Nahum Parks Goddard and Fannie Louise Hoyt. Robert was their only child. As the age of electric power began to take shape in U.S. cities in the 1880s, the young Goddard became interested in science. When his father showed him how to generate static electricity on the family's carpet, the five-year-old's imagination was inspired. Robert experimented, believing he could jump higher if the zinc in batteries could somehow be charged with static electricity. The experiments failed, but his imagination would continue undiminished.
Goddard developed a fascination with flight, first with kites and then with balloons. He also became a thorough diarist and documenter of his own work, a skill that would greatly benefit his later career. These interests merged at age 16, when Goddard attempted to construct a balloon made with aluminum, shaping the raw metal in his home workshop. After nearly five weeks of methodical, documented efforts, he finally abandoned the project. However, the lesson of this failure did not restrain Goddard's growing determination and confidence in his work.
He became interested in space when he read H.G. Wells's science fiction classic The War of the Worlds when he was 16 years old. His dedication to pursuing rocketry became fixed on October 19, 1899. While climbing a cherry tree to cut off dead limbs, he imagined, as he later wrote, "how wonderful it would be to make some device which had even the possibility of ascending to Mars, and how it would look on a small scale, if sent up from the meadow at my feet." [1] For the rest of his life he observed October 19 as "Anniversary Day", a private commemoration of the day of his greatest inspiration.
[edit] Education and early work
A thin and frail boy, almost always in fragile health from stomach problems, Goddard fell two years behind his school classmates. He became a voracious reader, regularly visiting the local public library to borrow books on the physical sciences. Later, he continued his formal schooling as an 18-year-old sophomore at South High School in Worcester. His peers twice elected him class president. At his graduation ceremony in 1904, he gave his class oration as valedictorian. In his speech, Goddard included a phrase that would become emblematic of his life: "It has often proved true that the dream of yesterday is the hope of today, and the reality of tomorrow." Goddard enrolled at Worcester Polytechnic Institute in 1904. He quickly impressed the head of the physics department, A. Wilmer Duff, with his appetite for knowledge. Professor Duff took him on as a laboratory assistant and tutor.
His social activities continued at Worcester. He joined the Sigma Alpha Epsilon fraternity, and began a long courtship with Miriam Olmstead, an honor student who was second in his high school class. Eventually, she and Goddard were engaged, but they drifted apart, and the engagement ended around 1909.
While still an undergraduate, Goddard wrote a paper proposing a method for “balancing aeroplanes,” and submitted the idea to Scientific American, which published the paper in 1907. Goddard later wrote in his diaries that he believed his paper was the first proposal of a way to stabilize aircraft in flight. His proposal came around the same time as other scientists were making breakthroughs in developing functional gyroscopes.
Goddard received his B.S. degree in physics from Worcester Polytechnic Institute in 1908, and then enrolled at Clark University in the fall of that year.
His first writing on the possibility of a liquid-fuelled rocket came in February 1909. Goddard had begun to study ways of increasing a rocket’s energy efficiency using methods alternative to conventional, powder rockets. He wrote in his journal about an idea of using liquid hydrogen as a fuel with liquid oxygen as the oxidizer. He believed a 50 percent efficiency could be achieved with liquid fuel, an efficiency much greater than with conventional rockets.
Goddard received his M.A. degree from Clark University in 1910, and then completed his Ph.D. at Clark in 1911. He stayed for another year at Clark University as an honorary fellow in physics, and in 1912, he accepted a research fellowship at Princeton University.
[edit] First patents
In the decades around 1900, radio was a new technology, a fertile field for exploration and innovation. In 1911, while working at Clark University in Worcester, Mass., Goddard investigated the effects of radio waves on insulators [1a]. In order to generate radio-frequency power, he invented a vacuum tube that operated like a cathode-ray tube [2a]. This was the first use of a vacuum tube to amplify a signal, preceding even Lee de Forest's claim [3a-5a]. It thus marked the beginning of the electronic age.
[1a] Goddard, Robert H. "On ponderomotive force upon a dielectric which carries a displacement current in a magnetic field," Physical Review, vol. 6(2), pp. 99 - 120 (August 1914).
[2a] U.S. patent no. 1,159,209 (issued: 2 November 1915).
[3a] Aitken, Hugh G. J., The Continuous Wave: Technology and American Radio, 1900 - 1932 [Princeton, N.J.: Princeton University Press, 1985], p. 239.
[4a] Lehman, Milton, This High Man: The Life of Robert H. Goddard [N.Y., N.Y.: Farrar, Strauss, and Co., 1963], p. 59.
[5a] McElroy, Gil, "The Collins 45A - How Art Collins met Robert Goddard," QST, vol. 81(2), pp. 44 - 46 (February 1997).
In early 1913, Goddard became seriously ill with tuberculosis, and he was forced to leave his position at Princeton. He returned to Worcester, where he began a prolonged process of recovery.
It was during this recuperative period that Goddard began to produce his most important work. In 1914, his first two landmark patents were accepted and registered with the U.S. Patent Office. The first, Patent No. 1,102,653, issued July 7, 1914, described a multi-stage rocket. The second, Patent No. 1,103,503, issued July 14, 1914, described a rocket fueled with gasoline and liquid nitrous oxide. The two patents would become important milestones in the history of rocketry.
Goddard's critical breakthrough in rocketry was to use as a rocket engine the steam turbine nozzle that had been invented by the Swedish inventor Carl Gustaf Patrik de Laval (1845 - 1913) [1b]. This nozzle allows the most efficient ("isentropic") conversion of the energy of hot gases into forward motion [2b, 3b]. By means of this nozzle, Goddard increased the efficiency of his rocket engines from 2 percent to 64 percent [4b, 5b]. This greatly reduced the amount of rocket fuel required to lift a given mass and thus made interplanetary travel practical.
[1b] Biography of de Laval: http://en.wikipedia.org/wiki/Gustaf_de_Laval
The de Laval turbine: http://www.history.rochester.edu/steam/parsons/Fig_4.GIF See also: http://www.britannica.com/eb/art-19418
[2b] The de Laval nozzle: http://en.wikipedia.org/wiki/De_Laval_nozzle
[3b] Shapiro, Ascher H., The Dynamics and Thermodynamics of Compressible Fluid Flow [N.Y., N.Y.: Ronald Press Co., 1953], Chapter 4: Isentropic flow.
[4b] Goddard, Robert H., Rockets [Mineola, N.Y.: Dover Publications, 2002], pp. 2, 15.
[5b] Clary, David A., Rocket Man: Robert H. Goddard and the Birth of the Space Age [N.Y., N.Y.: Hyperion, 2003], pp. 44 -45.
[edit] Mid to late 1910s
In the fall of 1914, Goddard's health had improved enough for him to accept a part-time teaching position at Clark University. By 1916, the cost of his rocket research was becoming too much for his modest teaching salary to bear. He began to solicit financial assistance from outside sponsors, beginning with the Smithsonian Institution, which agreed to a five-year grant totaling $5,000.
Not all of Goddard's early work was geared towards space travel. He developed the basic idea of the bazooka and, using a music rack for a launcher, demonstrated the weapon at Aberdeen Proving Ground two days before the Armistice that ended World War I. Another Clark University researcher continued Goddard's work on the bazooka, leading to the weapon used in World War II.
[edit] A Method of Reaching Extreme Altitudes
In 1919, the Smithsonian Institution published Goddard's groundbreaking work, A Method of Reaching Extreme Altitudes. The book describes Goddard's mathematical theories of rocket flight, his research in solid-fuel and liquid-fuel rockets, and the possibilities he saw of exploring the earth and beyond. The book is regarded as one of the pioneering works of the science of rocketry, and is believed to have influenced the work of German pioneers Hermann Oberth and Wernher von Braun.
[edit] New York Times criticism
The publication of Goddard's document gained him national attention from U.S. newspapers. Although the book makes no outlandish boasts of targeting the moon or the planets, the papers sensationalized Goddard's ideas to the point of misrepresentation.
As a result of this, Goddard became increasingly suspicious of others and often worked alone, which limited the ripple effect from his work. His unsociability was a result of the harsh criticism that he received from the media and from other scientists, who doubted the viability of rocket travel in space. After one of his experiments in 1929, a local Worcester newspaper carried the mocking headline "Moon rocket misses target by 238,799 1/2 miles."
On January 12, 1920 a front-page story in The New York Times, "Believes Rocket Can Reach Moon," reported a Smithsonian press release about a "multiple charge high efficiency rocket." The chief application seen was "the possibility of sending recording apparatus to moderate and extreme altitudes within the earth's atmosphere," the advantage over balloon-carried instruments being ease of recovery since "the new rocket apparatus would go straight up and come straight down." But it also mentioned a proposal "to [send] to the dark part of the new moon a sufficiently amount of the most brilliant flash powder which, in being ignited on impact, would be plainly visible in a powerful telescope. This would be the only way of proving that the rocket had really left the attraction of the earth as the apparatus would never come back."[1]
The next day, an unsigned NY Times editorial delighted in heaping scorn on the proposal. The editorial writer attacked the instrumentation application by questioning whether "the instruments would return to the point of departure... for parachutes drift just as balloons do. And the rocket, or what was left of it after the last explosion, would need to be aimed with amazing skill, and in a dead calm, to fall on the spot whence it started. But that is a slight inconvenience... though it might be serious enough from the [standpoint] of the always innocent bystander... a few thousand yards from the firing line."
The weight of scorn was, however, reserved for the lunar proposal: "after the rocket quits our air and really starts on its longer journey it will neither be accelerated nor maintained by the explosion of the charges it then might have left. To claim that it would be is to deny a fundamental law of dynamics, and only Dr. Einstein and his chosen dozen, so few and fit, are licensed to do that." It expressed disbelief that Professor Goddard actually "does not know of the relation of action to reaction, and the need to have something better than a vacuum against which to react" and even talked of "such things as intentional mistakes or oversights." Goddard, the Times insisted, apparently suggesting bad faith, "only seems to lack the knowledge ladled out daily in high schools."
On July 17, 1969—the day after the launch of Apollo 11— the New York Times published a short item under the headline "A Correction," summarizing its 1920 editorial mocking Goddard, and concluding: "Further investigation and experimentation have confirmed the findings of Isaac Newton in the 17th century and it is now definitely established that a rocket can function in a vacuum as well as in an atmosphere. The Times regrets the error."
[edit] First flight
Goddard launched the first liquid-fueled rocket on March 16, 1926 at Auburn, Massachusetts. His journal entry of the event was notable for its laconic understatement: "The first flight with a rocket using liquid propellants was made yesterday at Aunt Effie's farm." The rocket, which was dubbed "Nell", rose just 41 feet during a 2.5-second flight that ended in a cabbage field, but it was an important demonstration that liquid-fuel propellants were possible.
Viewers familiar with more modern rocket designs may find it difficult, on viewing the well-known picture of "Nell", to distinguish the rocket from its launching apparatus. The complete rocket is significantly taller than Goddard, but does not include the pyramidal support structure which he grasps. The rocket's combustion chamber is the small cylinder at the top; the nozzle is visible beneath it. The fuel tank, which is also part of the rocket, is the larger cylinder opposite Goddard's torso. The fuel tank is directly beneath the nozzle, and is protected from the motor's exhaust by an asbestos cone. Asbestos-wrapped aluminum tubes connect the motor to the tanks, providing both support and fuel transport. [2] Improved understanding of rocket dynamics, and the availability of more sophisticated control systems, rendered this design—in which a motor at the top pulls the rocket—obsolete, supplanted by the now familiar design in which the motor is located at the bottom and pushes the rocket from behind.
[edit] Lindbergh and Goddard
After a launch of one of Goddard's rockets in July 1929 again gained the attention of the newspapers, Charles Lindbergh learned of his work. At the time, Lindbergh had begun to wonder what would become of aviation in the distant future, and had settled on rocket flight as a probable next step. He contacted Goddard in November 1929. The professor met the aviator soon after in Goddard's office at Clark University. Upon meeting Goddard, Lindbergh was immediately impressed by his research, and Goddard was similarly impressed by the flier's interest. He discussed his work openly with Lindbergh, finding a mutual alliance with Lindbergh that was to last for the rest of his life.
By late 1929, Goddard had been attracting additional notoriety with each rocket launch. He was finding it increasingly difficult to conduct his research without unwanted distractions. Lindbergh discussed finding additional financing for Goddard's work, and put his famous name to work for Goddard. Into 1930, Lindbergh made several proposals to industry and private investors for funding, which proved all but impossible to find following the recent U.S. stock market crash in October 1929.
Lindbergh finally found an ally in the Guggenheim family. Financier Daniel Guggenheim agreed to fund Goddard's research over the next four years for a total of $100,000. The Guggenheim family, especially Harry Guggenheim, would continue to support Goddard's work in the years to follow.
[edit] Roswell, New Mexico
With new financial backing, Goddard eventually relocated to Roswell, New Mexico (long before the area became the center of the UFO craze) where he worked in near isolation for a dozen years, and where a high school was later named after him. Though he brought his work in rocketry to the attention of the United States Army, he was rebuffed, as the Army largely failed to grasp the military application of rockets.
Ironically, it was Nazi Germany that took the most interest in his research. Wernher von Braun relied on Goddard's plans when he developed the V-2 rockets during World War II [3]. Before 1939, German scientists would occasionally even contact Goddard directly with technical questions. In 1963, von Braun, reflecting on the history of rocketry, said of Goddard: "His rockets ... may have been rather crude by present-day standards, but they blazed the trail and incorporated many features used in our most modern rockets and space vehicles" [4].
Goddard was the center of a famous espionage operation involving the German Intelligence Agency, Abwehr and an operative called Nikolaus Ritter. As the head of the agency's U.S. operations, Ritter recruited a source who infiltrated the circle around Goddard, leaking his discoveries to the Germans.
After his offer to develop rockets for the Army was declined, Goddard temporarily gave up his preferred field to work on experimental aircraft for the U.S. Navy. After the war ended, Goddard was able to inspect captured German V-2s, many components of which he recognized. However, Goddard would not design any more rockets of his own.
He learned he had throat cancer in 1945 and died that year on August 10 in Baltimore, Maryland. He was buried in Hope Cemetery in his hometown of Worcester, Massachusetts.
[edit] Legacy
Goddard was awarded 214 patents for his work, 83 of which came during his lifetime. The Goddard Space Flight Center, established in 1959, is named in his honor. Goddard crater, on the Moon, is also named in his honor.
His hometown of Worcester established the Goddard School of Science and Technology, an elementary school, in 1992.
The Goddard Library at Clark University is named in his honor.
The Chemical Engineering department at Worcester Polytechnic Institute is housed in Goddard Hall, which is named in his honor. In 1967 Robert H. Goddard High School (9-12) was built in Roswell, NM. The school's mascot is appropriately titled "Rockets."
[edit] Media
- Robert Goddard footage (file info)
- Problems seeing the videos? See media help.
[edit] See also
[edit] Quotations
- "It is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow." (From his high school graduation oration, "On Taking Things for Granted", June 1904)
- "On the afternoon of October 19, 1899, I climbed a tall cherry tree and, armed with a saw which I still have, and a hatchet, started to trim the dead limbs from the cherry tree. It was one of the quiet, colorful afternoons of sheer beauty which we have in October in New England, and as I looked towards the fields at the east, I imagined how wonderful it would be to make some device which had even the possibility of ascending to Mars. I was a different boy when I descended the tree from when I ascended for existence at last seemed very purposive." (Written later, in an autobiographical sketch)
- "Every vision is a joke until the first man accomplishes it; once realized, it becomes commonplace." (His response to the New York Times, 1920)
[edit] Timeline
- 1882 Birth in Worcester, Massachusetts
- 1900 US Census living with his grandmother
- 1908 Graduation from Worcester Polytechnic Institute
- 1919 A Method of Reaching Extreme Altitudes published
- 1920 Report in the New York Times on January 12
- 1924 Marriage to Esther Christine Kisk on June 21
- 1926 First rocket launched from Auburn, Massachusetts on March 26
- 1930 Moved to Mescalero Ranch, Roswell, New Mexico
- 1945 Death
- 1969 Apology in the New York Times on July 17
[edit] External Links
[edit] Patents of interest
- U.S. Patent 1102653 - Rocket apparatus - R. H. Goddard
- U.S. Patent 1103503 - Rocket apparatus - R. H. Goddard
[edit] References
Wikimedia Commons has media related to: |
- FAQ on Goddard
- Lehman, Milton, This High Man: The Life of Robert H. Goddard, 1963
- Robert Goddard Wing of the Roswell Museum
- NASA.Robert H. Goddard: American Rocket Pioneer. Retrieved May 1, 2005.
- Dr. Robert H. Goddard Archives from Clark University
- Smithsonian Archives - online documents
- TIME 100: The Most Important People of the Century (March 29, 1999)."Robert Goddard".
Categories: 1882 births | 1945 deaths | Aerospace engineers | Clark University alumni | Congressional Gold Medal recipients | National Inventors Hall of Fame | People from Worcester, Massachusetts | Sigma Alpha Epsilon brothers | Space visionaries | Throat cancer deaths | People from Worcester County Massachusetts | People from Massachusetts