Rice distribution

From Wikipedia, the free encyclopedia

Rice
Probability density function
Rice probability density functions σ=1.0
Rice probability density functions for various v   with σ=1.
Rice probability density functions σ=0.25
Rice probability density functions for various v   with σ=0.25.
Cumulative distribution function
Rice cumulative density functions σ=1.0
Rice cumulative density functions for various v   with σ=1.
Rice cumulative density functions σ=0.25
Rice cumulative density functions for various v   with σ=0.25.
Parameters v\ge 0\,
\sigma\ge 0\,
Support x\in [0;\infty)
Probability density function (pdf) \frac{x}{\sigma^2}\exp\left(\frac{-(x^2+v^2)} {2\sigma^2}\right)I_0\left(\frac{xv}{\sigma^2}\right)
Cumulative distribution function (cdf)
Mean \sigma  \sqrt{\pi/2}\,\,L_{1/2}(-v^2/2\sigma^2)
Median
Mode
Variance 2\sigma^2+v^2-\frac{\pi\sigma^2}{2}L_{1/2}^2\left(\frac{-v^2}{2\sigma^2}\right)
Skewness (complicated)
Excess Kurtosis (complicated)
Entropy
mgf
Char. func.

In probability theory and statistics, the Rice distribution is a continuous probability distribution. The probability density function is:

f(x|v,\sigma)=\,
\frac{x}{\sigma^2}\exp\left(\frac{-(x^2+v^2)} {2\sigma^2}\right)I_0\left(\frac{xv}{\sigma^2}\right)

where I0(z) is the modified Bessel function of the first kind. When v = 0 the distribution reduces to a Rayleigh distribution.

Contents

[edit] Moments

The first few raw moments are:

\mu_1=  \sigma  \sqrt{\pi/2}\,\,L_{1/2}(-v^2/2\sigma^2)
\mu_2= 2\sigma^2+v^2\,
\mu_3= 3\sigma^3\sqrt{\pi/2}\,\,L_{3/2}(-v^2/2\sigma^2)
\mu_4= 8\sigma^4+8\sigma^2v^2+v^4\,
\mu_5=15\sigma^5\sqrt{\pi/2}\,\,L_{5/2}(-v^2/2\sigma^2)
\mu_6=48\sigma^6+72\sigma^4v^2+18\sigma^2v^4+v^6\,
L_\nu(x)=L_\nu^0(x)=M(-\nu,1,x)=\,_1F_1(-\nu;1;x)

which, for the case ν=1/2, simplifies to:

L_{1/2}(x)=\,_1F_1\left( -\frac{1}{2};1;x\right)
=e^{x/2} \left[\left(1-x\right)I_0\left(\frac{-x}{2}\right) -xI_1\left(\frac{-x}{2}\right) \right]

Generally the moments are given by:

\mu_k=s^k2^{k/2}\,\Gamma(1\!+\!k/2)\,L_{k/2}(-v^2/2\sigma^2)\,

where s = σ1 / 2.

When k is even, the moments become actual polynomials in σ and v.

[edit] Limiting cases

For large values of the argument, the Laguerre polynomial becomes (See Abramowitz and Stegun §13.5.1)

\lim_{x\rightarrow -\infty}L_\nu(x)=\frac{|x|^\nu}{\Gamma(1+\nu)}

It is seen that as v becomes large or σ becomes small the mean becomes v and the variance becomes σ2

[edit] See also

  • Stephen O. Rice (1907-1986)

[edit] External links

[edit] References

  • S.O.Rice, Mathematical Analysis of Random Noise. Bell System Technical Journal 24 (1945) 46-156.
Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BernoullibinomialBoltzmanncompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomial
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-squareinverse Gaussianinverse gammaKumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)ParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVoigtvon MisesWeibullWigner semicircleWilks' lambda DirichletKentmatrix normalmultivariate normalvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular
In other languages