Relativistic Euler equations

From Wikipedia, the free encyclopedia

In fluid mechanics and astrophysics, the relativistic Euler equations are a generalization of the Euler equations that account for the effects of special relativity.

The equations of motion are contained in the continuity equation of the stress-energy tensor Tμν:

\nabla_\mu T^{\mu\nu}=0

For a fluid,

Tμν = (e + p)uμuν + pgμν.

Here e is the relativistic rest energy of the fluid, p is the pressure, u is the four-velocity of the fluid, and gμν is the metric tensor.

To the above equations, a statement of conservation is usually added, usually conservation of baryon number. If n is the number density of baryons this may be stated

\nabla_\mu (nu_\mu)=0.

These equations reduce to the classical Euler equations if u\ll c.

The relativistic Euler equations may be applied to calculate the speed of sound in a fluid with a relativistic equation of state (that is, one in which the pressure is comparable with the internal energy density e, including the rest energy; e = ρc2 + ρeC where eC is the classical internal energy).

Under these circumstances, the speed of sound S is given by

S^2=c^2 \left. \frac{\partial p}{\partial e} \right|_{\rm adiabatic}.

(note that

e = ρ(c2 + eC)

is the relativistic internal energy density). This formula differs from the classical case in that ρ has been replaced by e / c2.