Talk:Reductio ad absurdum
From Wikipedia, the free encyclopedia
Can someone please explain this:
- basically: if
- S union { ¬ t } |-- F
- then
- S |-- t
- S union { ¬ t } |-- F
I suspect the equivalent point can be made just as well in more widely known notation, perhaps even in plain-old English. --Ryguasu
- seems that the english version of the above is in the first paragraph. -- Tarquin 10:34 Jan 10, 2003 (UTC)
- could you at least explain what S and t are? It probably doesn't add clarity that A, used in the English version, does not figure into the symbols. --Ryguasu
- Ok, thanks for the in-line explanation. I still think the TeX graphic and the textual description should use the same letter to represent "the statement". Changing the text might be easier, but I think, Tarquin, your choice of "t" for the statement in the TeX graphic is unfortunate, as it reminds the untrained eye of "true". Is this a routine convention for this sort of formal symbol representation? --Ryguasu
-
- I would prefer A instead of t, for the sake of consistency within the article. After all, proposition F already has the form of a capital letter. --FvdP 20:35 Jan 10, 2003 (UTC)
F is not a proposition, it represents logical False. Propositions are small letters. small a could be ok. -- Tarquin 20:37 Jan 10, 2003 (UTC)
- I should have known (and did realize, but a bit late.) OK for a. I've had the idea to replace F with a more common sign for "false", like , but that would annoy non-mathematically readers more than it would be useful, IMO. --FvdP
- Does it make sense to replace A with a (or pehaps a) in the body of the text as well? This would save us from including an overly philosophical sentence along the lines of "Take a to be the same as A." Also, if we put italic a in the text, can we make it italic in the graphic as well? --Ryguasu
-
- I (boldly!) jumped in and relaced occurrences of "A", a, and t with p (for proposition), and relaced "B" with q. Apologies if the term "hypothesis" is being used in a technical sense here - h just seemed less obvious as a choice.
-
-
- Ah, p ! That had become too obvious to be seen (by me). Thanks Chas for the change. --FvdP
-
-
- I agree that seems unneccesarily obtuse here - I'd be just as happy replacing F with "false", i.e.:
-
- unless that's problematic. Also, the law of the excluded middle is being invoked here - do we need to add a link to intuitionism or the like here? Chas zzz brown 01:01 Jan 11, 2003 (UTC)
-
-
- I have no definitive opinion on this. The interested reader can get the link through law of the excluded middle. Perhaps we should interest him more by telling a few words on intuitionism ? --FvdP
-
-
-
- Even in intuitionistic logic, if , one can still conclude that . The real difference is that in classical logic, but not in intuitionistic logic. So I don't think it's a major difference in this case, or particularly worth mentioning. Dominus
-
I don't like too much the given in
- and S is a set of statements which are given as true
because it reads (to me) like we're just giving them the status of being true, out of the blue, which can't be. But I don't know what to write instead:
- and S is a set of true statements
- and S is a set of statements which are known to be true
- and S is a set of statements which have been proven to be true
- ...
--FvdP 01:05 Jan 11, 2003 (UTC)
- But that ultimately is all we can say; that they are given (or is it taken?) as true "out of the blue". For example (loosely speaking), "parallel lines meet at infinity" is not inherently true - but if we take it as true then we get euclidean geometry. Alternatively, we could just as easily say that "parallel lines always intersect at exactly two points"; this would then imply a different geometry.
- The statements in S are either a given set of axioms which we postulate as true, or theorems following from axioms which essentially comes to the same thing (in that we assume that these theorems really do follow from some axiom set A; i.e., that p can be deduced directly from A as well as from S). From this point of view, we don't so much prove that p is "True", as that p is true assuming that (i.e., given that) the statements in S are true (which generally has been previously proven if needed).
- By my phrasing, I was hoping to distinguish between "Truth" and "truth". Philosophically, one can argue that certain axioms are "really" true, e.g. platonism; but it is not required that one hold this philosophical view to use reductio ad absurdum. Cheers Chas zzz brown 01:50 Jan 11, 2003 (UTC)
-
- We can get rid of this "given as true" confusion by adding a second part to the if in the formal notation. It can now read
-
-
- if
- it is not the case that S |-- F
- and
- S union { ¬ p } |-- F
- then
- S |-- t
- if
-
-
- Does this deal with both side's objections? --Ryguasu
-
-
- I have no idea what this is saying. -- Zoe
-
-
-
-
- Do you understand the formal logic notation used elsewhere on this page? My comment was aimed at those who did. --Ryguasu
-
-
The formal notation is useless and should be relegated to a footnote. Why do I push this heresy? Because anyone who can read it already knows what a reductio ad absurdum is, and anyone who doesn't know what it is has got Buckley's chance of figuring out how to read ::: or any similar formula. A plain-text example in simple English is badly needed. This should come first, so that the non-expert reader can find it immediately, and be followed by the more formal explanation. Tannin 02:15 Jan 11, 2003 (UTC)
- Yes, much improved now Chas. It would be better still if it were a non-mathematical example, but (to my shame) I can't think of one that's clear enough! Tannin 09:44 Jan 11, 2003 (UTC)
It's always nice when an article dramatically improves overnight! :-) The "smallest rational number" example is great. -- Tarquin 10:43 Jan 11, 2003 (UTC)~
Text from Reductio Ad Absurdum:
A method of disproving a proposition, by demonstrating that it leads to a contradiction.
An example would be the proof that the square root of 2 is irrational. Begin with the proposition that there exist integers M and N with no factors in common, where M*M = 2*N*N. If they exist, then the square root of 2 is the rational number M/N.
2*N*N is even, and therefore M*M is even. This implies that M is even, since an odd number cannot have an even square. Therefore K = M/2 is an integer. Then 2*K*K = N*N, and it follows that N is even.
The equation M*M = 2*N*N cannot hold unless both M and N are even. This contradicts the initial assumption that M and N have no factors in common.
I'd propose moving this article to Proof by contradiction and redirecting there. Reductio ad absurdum is the historical name used in philosophy and formal logic, but proof by contradiction is the more common English name and the one preferred in most modern mathematics articles. --Delirium 22:51, Oct 15, 2003 (UTC)
- Interesting idea, but isn't proof by contradiction just one type of reductio argument? Granted a contradiction is an absurdity, but many reductio arguments work by exhibiting conclusions that are counter-intuitive or otherwise philosophically expensive (eg they come with heavy ontological commitments). For example, Zeno's paradoxes are reductio arguments but they aren't really proofs by contradiction. For that reason I personally would tend not to call the classical proof of the irrationality of root 2 a reductio ad absurdum but would use the more specific term. In general I think "proof by contradiction" appeals to formal inconsistency (ie deriving p and not-p), whereas reductio arguments can be less rigorous and still be effective. You could almost say that the conclusion can be "strongly absurd" (contradiction) or "weakly absurd" (unattractive). You can respond to a weak reductio argument by accepting it, if you wish to, and you are not commited to a contradiction by so doing, although you may have work to do to make a convincing case. I'm making some of this up so take it with a pinch of salt, but that's the way it seems to me. Ornette 15:45, 2 November 2005 (UTC)
I used to be appalled at seeing people (non-mathematicians, mostly) use the term to refer simply to an absurd argument, seemingly translating the Latin to "absurd reduction" instead of "reduction to the absurd". However, I've noticed that Merriam-Webster's lists a second (presumably less formal) meaning of the term as "the carrying of something to an absurd extreme". I'm curious to find out whether this is an instance of a sloppy translation gaining status as an acceptable meaning simply through widespread usage. If anyone can shed some light on the non-specialist use (or abuse) of the term, it could be an interesting aside to this article. rajneesh 04:15, 19 Aug 2004 (UTC)
I've never heard it misused like that. Note, however, that the mathematical use is not the primary one. It is mainly used in philosophy. Chameleon 09:06, 17 Nov 2004 (UTC)
I arrived at this page to find out if there were non-mathematical uses of this term. Specifically, where one tries to kill a project, by "improving" it to the point where it must fail. For instance, take a product that breaks even with costs of $0.90, and a sale price of $1, and improve it so that it now costs $1.05 to make, has to sell for $2, and now is a failure. Perhaps there is another term for that kind of effort. Mcr314 02:37, 4 May 2005 (UTC)
[edit] Nazism
I'm out of my depth, so just wondered if anyone else felt that using Nazism in the article seems a bit odd, especially against the flat earth thing. --[[User:Bodnotbod|bodnotbod » .....TALKQuietly)]] 10:01, Dec 5, 2004 (UTC)
- How is it odd? Whether you happen to agree with the Nazis or not, it is the typical example used in such reductions. So much so that Godwin's law has been humorously invented as a remark upon the phenomenon. Chamaeleon 01:43, 19 Jan 2005 (UTC)
- I think what he means is that the Earth has been proven to be round, and thus the "world is flat" argument is itself absurd or illogical. Nazism may be morally reprehensible, but that doesn't equate to it being illogical. The illogical part is when A contradicts himself. Dforest 15:28, 30 October 2005 (UTC)
- Even if it's a fact, it is still not a logical tautology that the Earth is round; the point is that the other speaker accepts it (third line). To assert "all beliefs are of equal validity and must not be denied" and "it is right to deny Nazism" is illogical. -Dan 16:24, 31 October 2005 (UTC)
- I think what he means is that the Earth has been proven to be round, and thus the "world is flat" argument is itself absurd or illogical. Nazism may be morally reprehensible, but that doesn't equate to it being illogical. The illogical part is when A contradicts himself. Dforest 15:28, 30 October 2005 (UTC)
I agree, I was struck the by inappropriateness of the Nazi reference as well. This is actually an NPOV issue; revolting though Nazism may be, some people believe in it and I don't think that how we feel about other people's beliefs has any place in an explanation of a logical argument. The flat earth example is less inflamatory and just as illustrative on its own. Ornette 15:25, 2 November 2005 (UTC)
- It has nothing to do about how we feel about Nazism. Reductions are quite often made to fascism, socialism, communism, anarchy, genocide, and other inflammatory conclusions. By contrast, a reductio argument to the Earth being flat is rather unusual. -Dan 18:40, 2 November 2005 (UTC)
[edit] Law of excluded middle
At least some references in the article to this law are inaccurate. The law of non-contradiction might be what was intended in those cases. To go from something like "If A, then something absurd; therefore not A." is perfectly constructive. Indeed "If A, then something absurd" is a common constructive reading of "not-A". The law of the excluded middle is only required for "Unless A, then something absurd; therefore A", and is non-constructive. -Dan 19:58, 22 August 2005 (UTC)
[edit] Reductio creep
Would an article on "Reductio creep", a neologism coined by Julian Sanchez, be suitable for wikipedia?
The term is used to describe the following process: During the debate about doing X, opponent B says that if X is accepted, then Y would also be accepted, and isn't Y ridiculous? Subsequently, X is indeed accepted, and now serious debate about doing Y occurs. Opponent C then says that if Y is accepted, then Z would also be accepted, and Z is ridiculous. Then Y gets accepted, and serious debate occurs about Z, and so on... Thus there is a general erosion about what is absurd.
Julian coined it when he heard about someone suing the fast food industry. In his article, he said that when there was debate over suing tobacco companies, suggesting that people sue fast food companies for getting fat was considered a reductio ad absurdum, but that it was now a reality. Andjam 08:45, 25 October 2005 (UTC)
- I've never heard of "reductio creep" or Julian Sanchez, but if you feel the term is commonly used, I say go for it. Even if not, it would be good to have here something in this article to the effect of "on the other hand, one might simply accept the logical consequences of one's ideas despite the absurdity" with the examples of the "all beliefs are equally valid" fellow accepting that Nazism is ok, and the fast food example. -Dan 16:50, 31 October 2005 (UTC)
[edit] “Reductio ad absurdum”, “material implication”, “contraposition”, and “self-contradiction”
Self-contradiction in reductio ad absurdum argument (“reduction to absurdity” --- in its strictest form, “reduction to self-contradiction” [please refer to Nicholas Rescher, “Reductio ad Absurdum” in Stanford Encyclopedia of Philosophy @Internet]) is inherent with the very definition of material implication --- with P true and ~P --> Q as well as ~P --> ~Q being both true at the same time so that ~P --> P (by contraposition and the transitive property of material implication) or with P false and P --> Q as well as P --> ~Q being both true at the same time so that P --> ~P (by contraposition and the transitive property of material implication). Contraposition (~Q --> ~P) is definitionally equivalent to material implication (P --> Q) --- their truth tables are identical. Moreover, contraposition checks infinite regress of reasoning — that is, one needs to justify P in P --> Q with O --> P, O with N --> O, N with M --> N, and so on ad infinitum but contraposition prevents the necessity for this infinite justifications so contraposition must be a “first principle” (not merely a “theorem”) just like the first principles of identity (P --> P), excluded middle (P OR ~P), and non-contradiction [~(P AND ~P)] (Aristotle’s 3 “laws of thought”) all of which are in fact embodied in the very definition of truth-functional logic (that is, Boolean or 2-valued logic wherein the truth-value of a compound formula is determined by the truth-values of its prime constituents).
A reductio ad absurdum (“reduction to self-contradiction”) proof goes either (~P --> P) --> P or (P --> ~P) --> ~P.
- The first reductio ad absurdum tautologous scheme simply says that if one assumes P to be false and establish by logical reasoning (that is, some valid argument) that in fact P is true then P is actually true. By the very definition of material implication, the assumption that P is false means P --> ~P is true so that together with the “proven” antecedent ~P --> P they are equivalent to P <--> ~P which is equivalent to P AND ~P (a self-contradiction) from which (being false) any conclusion immediately follows (again, from the very definition of material implication).
- The second reductio ad absurdum tautologous scheme simply says that if one assumes P to be true and establish by logical reasoning (some valid argument) that in fact P is false then P is actually false. By the very definition of material implication, the assumption that P is true means ~P --> P is true so that together with the “proven” antecedent P --> ~P they are equivalent to ~P <--> P which is equivalent to ~P AND P (a self-contradiction) from which (being false) any conclusion immediately follows (again, from the very definition of material implication).
- What must be emphasized here is that ---
- (1) reductio ad absurdum (“reduction to self-contradiction”) is a self-contradictory argument [that is, it is absurd to derive a self-contradictory proposition P inasmuch as this does not truly establish the truth or falsity of proposition P];
- (2) P is a self-contradictory proposition or formula scheme [that is, P is not only false or true it is also true or false, respectively, at the same time]; and (3) P AND ~P is a contradiction [that is, it is always false for any truth-value for P] from which, used as an antedent, any consequent follows.
- It is reiterated: in a self-contradiction --- P AND ~P --- it is the conjunction which is false while the proposition P itself is both true and false which violates the very definition of a proposition in truth-functional logic as being single-valued.
In plain words, a reductio ad absurdum (“reduction to self-contradiction”) argument with material implication and contraposition as defined in truth-functional logic is self-contradictory reasoning. Thus, non-classical logics like relevance logic (that is, where it is required that premises be relevant to the conclusions drawn from them, and that the antecedents of true conditionals are likewise relevant to the consequents) had been developed to avoid from the beginning the self-contradictions. With relevance logic, a reductio ad absurdum [should actually be reductio ad falsum (“reduction to falsehood or contradiction”) or reductio ad impossibile (“reduction to impossible”) or reductio ad ridiculum (“reduction to implausibility”) or reductio ad incommodum (“reduction to anomaly”)] argument makes sense because it pre-emptively disallows, or they do not involve, self-contradiction. With the statement calculus and predicate calculus of first-order mathematical logic, the self-contradictions are barred ab initio by agreeing that Aristotle’s 3 “laws of thought” (the 3 are definitionally equivalent) as well as contraposition (which is definitioanlly equivalent to material implication that is typically used, together with negation, as the base statement connectives of first-order theories) are to be “first principles” --- that is, they are over and above all other axioms of any first order theory — in particular, the first principle of non-contradiction which prohibits from the beginning the consideration of a self-contradiction (that is, invoking a logical formula and its negation at the same time in the same respect).
- What this means is simply that reductio ad absurdum (“reduction to self-contradiction”) is ridiculous and absurd while the other cases of reductio (that is, not factually “reduction to self-contradiction”) may well be “valid reasoning” if: (1) in the case of the first reductio ad absurdum tautologous scheme, with the assumption that P is false, it is not _factually_ true that P --> Q and P --> ~Q (for any proposition or formula scheme Q) are both true at the same time; or, (2) in the case of the second reductio ad absurdum tautologous scheme, with the assumption that P is true, it is not _factually_ true that ~P --> Q and ~P --> ~Q (for any proposition or formula scheme Q) are both true at the same time.
-
- First, consider the widely accepted “Euclid’s” proof of the proposition P about the infinitude of the prime natural numbers. An assumption is made, ~P, that there are only finitely many prime natural numbers. Now, there is no proposition Q such that both P --> Q and P --> ~Q are factually true at the same time --- thus, this is actually not a true reductio ad absurdum (reduction to “self-contreadiction” ) argument because there is no “self-contradiction” involved here. The initial supposition ~P (which references “infinity”) simply need not be stated --- this is called finitary argument: it simply asserts that given any finite list of prime natural numbers one could always find another prime natural number that is not in the list (this “no last element” scenario is to be taken as the meaning of “infinite”).
-
- Next, consider the standard argument proving that 1/0 is not an element of the field of real numbers. An assumption is made, P, that 1/0 = c is a real number and it is argued that this leads to 1 = 0 [since 0 ٠ c = 0 for all real number c (this is easily derived from the field axioms)]. There is no “reduction to self-contradiction” here but only “reduction to falsehood” or “reduction to contradiction” [that is, the argument is merely reduced to the result 1 = 0 which is a contradiction --- it is false] so this argument is valid.
-
- Next, consider Cantor’s diagonal argument “proving” the “uncountability” of the real numbers by first assuming that all the fractional real numbers are countable and they could be row-listed in the standard enumeration form x1, x2, x3, … from which a fractional real number not in the row-listing could be formed from the anti-diagonal digits. Now, this so-called “proof” is replete with so many self-contradictions and, thus, is an untenable reasoning ---
- (1) the assumption that all the fractional real numbers could be row-listed uniquely and exhaustively in the standard enumeration form x1, x2, x3, … presupposes some list inclusion and imposition of order condition; but any of this specification is tantamount to the prescription that the nth-row number must have some particular digit at its nth-column position --- that is, the row-listing could be specified as such that the diagonal digits are all 0s, or all 1s, or alternating 0s and 1s, etc. Clearly, with the adoption of a prefixed fractional expansion point before the diagonal digits, the “real number” thus formed by the diagonal digits must be an “irrational number” because one can easily find an excluded fractional real number from the row-listing if it was a “rational number” (that is, one with a discernible pattern in its digits); hence, the anti-diagonal number must also be an “irrational number” that could not possibly satisfy ab initio its own row-list inclusion and imposition of order condition being different digit-for-digit to it;
- (2) the diagonal-digits-with-prefixed-fractional-expansion-point “real number” is a variable --- it is not a true real number which is a constant;
- (3) the row-listed fractional real numbers are mostly _intervals_ and not true real number _points_ (so Georg Cantor himself had to posit ordinal numbers --- in particular, omega as the first transfinite number, followed by omega + 1, omega + 2, and so on);
- (4) the standard enumeration form x1, x2, x3, … and the fact that each fractional real number is an infinite sequence of place-value base digits (at least 2 for binary system) is a self-contradiction --- the non-standard enumeration (still countable!) form a1, a2, a3, …, b1, b2, b3, … is more appropriate for the row-listing;
- (5) etc., etc., etc. . . .
- Next, consider Cantor’s diagonal argument “proving” the “uncountability” of the real numbers by first assuming that all the fractional real numbers are countable and they could be row-listed in the standard enumeration form x1, x2, x3, … from which a fractional real number not in the row-listing could be formed from the anti-diagonal digits. Now, this so-called “proof” is replete with so many self-contradictions and, thus, is an untenable reasoning ---
-
- Likewise, Kurt Godel’s argument which invokes the self-contradiction “This assertion cannot be proved”, Alan Turing’s argument which invokes the self-contradiction “a computer program halts if and only if it does not halt”, and many others that involve self-contradictions are untenable “proofs”.
Please read my Wikipedia discussion notes on “Cantor’s diagonal argument”, “Cantor’s theorem”, “Cantor’s first uncountability proof”, “Ackermann’s function”, “Boolean satisfiability problem”, “Entscheidungsproblem”, “Definable number”, and “Computable number”. (BenCawaling@Yahoo.com [14 December 2005])
[edit] Self-contradiction in “proof by contradiction”
One of the “absorption laws” of propositional logic or statement calculus is: (P --> (Q AND R)) <--> ((P --> Q) AND (P --> R)). Thus, (P --> (Q AND ~Q)) <--> ((P --> Q) AND (P --> ~Q)).
The formal argument in the “proof” of general Cantor’s theorem can be summarized as follows ---
- If there is a 1:1 correspondence between S and P(S), then the generator of T is in T. [1]
- If there is a 1:1 correspondence between S and P(S), then the generator of T is not in T. [2]
- Therefore, there is no 1:1 correspondence between S and P(S).
The conclusion follows from the “belief” that propositions [1] and [2] are contradictory. It might be argued that the conclusion follows from the contradiction “the generator of T is in T” AND “the generator of T is not in T”. However, the “absorption law” equivalence could not be discounted — that is, the latter contradiction claim also asserts the former “contradiction” claim. Moreover, it is the claims P --> Q and P --> ~Q that are separately demonstrated in this type of “proof by contradiction” and not the claim P --> (Q AND ~Q).
The following discussion by Alice Ambrose and Morris Lazerowitz in their book entitled “Fundamentals of Symbolic Logic” (New York: Holt, Rinehart and Winston; 1962) is enlightening in pointing out the logical defect in the preceding Cantor’s reasoning ---
- Any two propositions of ordinary discourse are related in one of the seven ways described (pages 85 – 92) [equivalence, superimplication, subalteration, subcontrariety, contrariety, contradiction, and logical independence]. Failure to understand their relationships is responsible for many of the fallacies in reasoning. For example, contradictories and contraries, contraries and subcontraries, are frequently confused, and propositions are sometimes supposed to be equivalent when they are not.
- As an illustration of a further logical relation commonly confused, take the two propositions ---
- If it rains, the crops will be good. [1]
- If it rains, the crops will not be good. [2]
- It might be supposed that these two propositions could not both be true, and that, hence, a person who made both these statements would be uttering an inconsistency. One needs merely to note that both propositions are true under the condition that it does not rain, to see that they are consistent with each other, and that therefore the supposition of their inconsistency is a mistake. These propositions are subcontraries.
In symbolic logic, both Georg Cantor’s argument as well as Alice Ambrose and Morris Lazerowitz’s example are of the form: P --> Q and P --> ~Q. Moreover, ((P --> Q) AND (P --> ~Q)) --> ~P is a tautology --- it is a flawed (particularly when there is no relevant relation between P and Q) variant of “proof by contradiction”.
- By the very definition of material implication, both P --> Q and P --> ~Q are true at the same time when P is false (regardless of the presence or absence of material relevance of the antecedent P to the consequent Q or ~Q) — so, invoking that these 2 propositional forms are inconsistent with each other is indeed preposterous. It might be argued (in fact, as guaranteed by the tautology scheme cited above) that the simultaneous truth of these two propositions _implies_ the falsity of the antecedent P. What I am counter-arguing is that they are _defined_ to be so — that is, it is a gross self-contradiction to call upon a definition to rationalize an argument. However, I reiterate that, as presented, the flaw in Cantor’s argument is in the false belief that [1] and [2] are contradictories (that is, when 2 propositions cannot both be true or both be false at the same time or that their conjunction is always false for all truth-value assignments to their atomic formulas or prime constituents).
- Georg Cantor inferred his conclusion without regard for the material or factual truth of his two implication premises. In the simpler-to-analyze example by Ambrose and Lazerowitz on the “rain” and “good crops” relation, we can easily see that both the given implication-premises lack material truth:
- There are countless of actual true-to-life circumstances whereby either “the crops will be good” or “the crops will not be good” is true without their truth being a direct consequence of the truth or falsity of “it rains”.
- On the other hand, if “it rains” adequately only then “the crops will be good” is true while if “it rains” exceedingly hard so that flooding occurs then “the crops will not be good” is also true.
Ambrose and Lazerowitz expounded on the issue of escaping commitment to the conclusion of an inference which is also particularly relevant in pointing out the flaw in Cantor’s line of reasoning ---
- It is to be noted that whenever an inference is made, not only is an implication asserted to hold between premises and conclusion, but both premises and the conclusion are asserted to be true [it is emphasized that modus ponens ((P --> Q) AND P) --> Q is a tautology]. Both these facts are relevant to a consideration of the means of escaping commitment to the truth of an inferred conclusion. There are, in general, two ways of doing this. One way is to deny that the implication holds. This amounts to pointing out that the argument is formally invalid. The second way is to take exception to the material truth of the asserted premises; that is, either to refuse to agree to the initial assumptions or to point out their actual falsity. The relevance of denying the truth of the premises depends upon a logical fact about the relation between the antecedent and consequent of any implication when the antecedent is false.
- Consider the argument ---
- If it rains, it pours.
- It is raining.
- Therefore, it is pouring.
- This asserts, in part, that if the first two propositions are true then “It is pouring” must be true. Suppose now that either the implicative proposition “If it rains, it pours” is false or that “It is raining” is false. The conjunction of the two is in either case false. . . . the falsity of the antecedent (P --> Q) AND P is consistent with the falsity of Q as well as with its truth; hence, the truth of Q does not follow from the falsity of (P --> Q) AND P.
- The function ~((P --> Q) AND P) --> Q is not tautologous --- the truth-value of Q is not uniquely determined by ~((P --> Q) AND P). In general, if one denies the material truth of the premises or refuses to assent to it, there is no logical necessity of assenting to the truth of the conclusion.
Applying Ambrose and Lazerowitz’s well-informed logical declarations to Georg Cantor’s alleged ”proof” of his hierarchy-of-infinite-power-sets theorem, it is easily seen that Georg Cantor’s argument is not a valid application of “proof by contradiction” deduction — we firmly deny the material truth of its implication premises or we refuse to assent to them on the ground that T [the set of all the elements of the infinite set S which are not contained in their respective images for the presumed one-to-one correspondence between S and its power set P(S)] is not really a completely constructible set (as defined, T is an indeterminate infinite set) or the contradiction with regard to the generator of T occurs only if we look at T as a completed totality of an infinite set.
The simultaneous truth of P --> Q and P --> ~Q when P is false are embodied in the definition of modern Fregean logic’s material implication (regardless of the presence or absence of material relevance of the antecedent P to the consequent Q or ~Q) --- so, it is a gross self-contradiction to call upon some definition (which cannot be contradicted) to rationalize a faulty alleged “proof by contradiction” argument. Furthermore, because both P --> Q and P --> ~Q are defined true when P is false, then they do not form a contradiction. The self-contradiction is in invoking that they form a contradiction in spite of the concerted efforts by present-day logicians justifying the modern meaning of material implication that they do not.
- It might be argued that the defect is merely in the nomenclature “proof by contradiction” which could be immediately remedied by just dropping the “contradiction” reference to the argumentation. However, it is stressed that this is not simply the case --- rather, it is the abandonment by modern Fregean logic of the existential import of the universal quantifier that jettisoned such relations as subcontraries and left only contradiction relations in the traditional so-called Aristotle’s “square of opposition” (relating “All S is P”, “No S is P”, “Some S is P”, “Some S is not P”) --- the sides (contrariety, subcontrariety, superimplication, and subalternation) are discarded while the diagonal (contradiction) is retained.
- In other words, in the classical Aristotlean logic, “All S is P” (also expressible as “No S is non-P”) and “No S is P” (also expressible as “All S is non-P”) implies the existence of S. With the Fregean logic interpretation dropping the existential import of a universal quantifier (cajoled by the seeming simplification offered by adhering to a Boolean algebra implementation), comes the definition of material implication with P --> Q and P --> ~Q being both true when P is false without any regard for any factual relevance relating the antecedent P and the consequent Q or ~Q. As a consequence, in modern Fregean logic, “it will be necessary to accept what at first sight is paradoxical” --- for example, “both ‘All leprechauns are bearded’ [which can also be stated as “No leprechauns are not bearded”] and ‘No leprechauns are bearded’ [which can also be expressed as “All leprechauns are not bearded”] will be counted true, given the circumstance that there are no leprechauns” [Ambrose and Lazerowitz].
- Scientific theories rigorously observe the Aristotlean logic’s implied existential import of the universal quantifier so they are successfully applied in practice. In Fregean predicate logic, the formula (For all)vP --> (There exist)vP is a generally accepted theorem which makes explicit what was implicit in Aristotlean logic. However, the rationalization for defining material implication to be true whenever the antecedent is false had already been forgotten --- hence, the hidden self-contradiction (in the example cited about leprechauns, the apparent contradiction is easily seen when the statements with the same quantifier are compared).
- It is noted that every model for a first-order theory is prescribed to have a non-empty domain. It is also stressed that any specification of a self-contradiction serves to define an empty set.
Related as “vacuous truths” to logic’s material implication “paradox” is the inherent “paradox” in set theory --- if the empty set is an element of any set’s power set (or a subset of any set), then the empty set is also an element of the power set of the given set’s complement set (or a subset of the given set’s complement set) --- thus, the set of all subsets of a given set and the set of all subsets of its complement set are not mutually exclusive despite the fact that their intersection set contains the empty set (this means a hierarchical level of interpretation for the supposedly unique empty set). In the present case, the self-contradiction is in discarding the existential import of the universal quantifier while giving existential attribute to the empty set — that is, the empty set has cardinal number 0 while the set that contains the empty set has cardinal number 1.
- This engenders positive motivation for formulating some set theory based on the primitive concepts “set” and “subset” by considering power sets or sets of subsets instead of sets of individual elements (that is, {a} instead of just a) — the isomorphism with the incompletable set of all natural numbers whose every element has a successor is evident from the fact that every subset implies a superset. Thus, paradoxes involving the comparison of the sizes of two distinct sets with respect to “one being a subset of the other” and “one-to-one correspondence of their respective individual elements” would be mooted ab initio — that is, there will be no “uncountable set” unless the latter signifies “every subset (or, element) always has a superset (or, successor element)” or “not a completeable set”.
Every semantic paradox has its analog in set theory, and every set theory paradox has its semantic analog --- that is, every truth-value statement can be rephrased as a statement about sets, and vice versa. The liar-paradox assertion --- “This statement is false” --- can be translated into --- “This statement is a member of the set of all false statements”. The correlation with the completed infinite set self-contradiction is evident — that is, the countably infinite set of all false statements cannot be truly completed. Also, the more basic association with the general inexpressibility of the negation of a countably infinite whole (that is, “the set of all false statements” as the negative of “the set of all true statements”) in terms of its elements and their negatives (that is, the truth or falsity of every statement) is equally manifest. It is further stressed that the assertion “This statement is an element of the set of all true statements” is not a self-contradiction.
- The preceding discussion is simply stated in symbolic logic. The truth of a countably infinite disjunction P1 OR P2 OR P3 OR … could be simply established by the truth of just one of its variables even though the latter are countably infinite; however, the truth of a negated countably infinite disjunction ~( P1 OR P2 OR P3 …) = ~P1 AND ~P2 AND ~P3 … could only be ascertained from the truth of all of its negated variables which might be impossible to establish for a domain with countably infinite number of elements.
This provides a very simple proof for Godel’s incompleteness theorem (the relevance of the encompassed natural number system is clear). Please read my discussion text in the Wikipedia article “Godel’s Incompleteness Theorems”. [BenCawaling@Yahoo.com --- 10 February 2006]BenCawaling 06:24, 28 March 2006 (UTC)
[edit] Poor example...
The following example is given:
- Example: Disproving statement 1 by reductio ad absurdum:
1. Living by no moral rules is just as correct as living by any given set of moral rules.
- 1->2
2. No one should have to live by any moral rules.
- 2->3
3. Society has no right to punish those who choose not to live by moral rules (murdering, stealing, etc).
4. Since 3 is an absurd supposition, 1 is incorrect.
Three is not an absurd supposition because murdering, stealing, etc. are outlawed because the acts infringe upon the victim's legal right to living and owning property, not because they're morally incorrect. --Berserk798 07:00, 5 March 2006 (UTC)
If we accept 1, society has no moral right to write those laws.Loodog 04:03, 24 March 2006 (UTC)
- I guess I didn't make it clear that I mean laws, in most countries, aren't morals. They aren't saying what's right and wrong, they exist to keep the country under control so it can function properly. You could easily have a law-abiding nation (i.e. one in which murder, stealing, etc. are punished) with no real morals. --Berserk798 21:56, 28 March 2006 (UTC)
-
- That societies should be kept under control so they can function properly is a moral statement, rendered unenforcable by 1.Loodog 18:06, 29 March 2006 (UTC)
But I'm trying to say that punishment to keep things under control and manageable is different from punishment because of right and wrong, which would be for moral reasons. It is not a moral statement. --Berserk798 22:41, 29 March 2006 (UTC)
-
-
- It's meant in the context of having the moral right to do it. Anyway, suffice it to say, if the issue requires this much sorting out, I'll concede it's not the best example for someone just wanting to know what a reductio ad absurdum argument is, but I don't think the others are as clear.
-
-
- Yeah, don't even mind me. I can't believe it wasn't clear to me to begin with. --Berserk798 00:15, 31 March 2006 (UTC)
By the by, the current first example regarding the flat earth belief is nonsensical from an everyday standpoint. If the statements "the earth is round" and "the earth is flat" are of equal validity, how can either statement be denied? MrWallet 01:05, 7 September 2006 (UTC)
[edit] Mathematical logic
The following reductio ad absurdum method should be included:
(p&¬q-->c)<-->(p-->q)
with c being the argument to be disproved.Ciacchi 23:09, 12 March 2006 (UTC)
[edit] Ad Impossibile not a Synonym
As this article shows, "reductio ad impossibile" is often used as a synonym for "reductio ad absurdum." But when the two are used more strictly, they have diferent meanings. --Christofurio 20:38, 31 March 2006 (UTC)
[edit] Slippery slope
Someone has added some nonsense about slippery slopes. This is not a reductio ad absurdum. It is simply a straw man. It is a fallacy, not a logical argument. — Gulliver ✉ 08:12, 1 April 2006 (UTC)
- I agree. We should remove it. --Berserk798 20:26, 2 April 2006 (UTC)
[edit] Fallacy?
Any reason this is in the logical fallacies category? --W0lfie 22:19, 19 May 2006 (UTC)
[edit] What sets apart appeal to ridicule and reductio ad absurdum?
Mother — Why did you start smoking? Son — All my friends were doing it. Mother — You're saying that if all your friends jumped off a cliff, you would do that too?
Seems to me like an exaggerated example, one of the reason why someone would want to start smoking in the first place would be to fit in a social group. But telling someone that he would suicide if his friends would do it sounds rather like a straw man to the premise. What exactly would set apart her reply from this : Mother — You're saying that if all your friends started eating s*** , you would do that too? Wouldn't that be a form of appeal to ridicule since they both sound as offensive?
I think the point was that the son did not use the argument that he was doing it to fit in; his argument was simply that he was doing it because everyone else was. A social group argument is valid, but never mentioned. Just because everyone else is doing it is an absurd argument, which is what is being shown. GSlicer 15:57, 13 December 2006 (UTC)
[edit] Second argument: revision?
- A — You should respect C's belief, for all beliefs are of equal validity and cannot be denied.
- B —
- I deny that belief of yours and believe it to be invalid.
- According to your statement, this belief of mine (1) is valid, like all other beliefs.
- However, your statement also contradicts and invalidates mine, being the exact opposite of it.
- The conclusions of 2 and 3 are incompatible and contradictory, so your statement is logically absurd.
Points 3/4 hide the rather obscure but quite definitely unassumed "fact" that two contradictory statements cannot be true at the same time
How about changing it to:
- A — You should respect C's belief, for all beliefs are of equal validity and cannot be denied.
- B —
- I deny that belief of yours and believe it to be invalid.
- I believe that contradictory statements cannot be true at the same time.
- According to your statement, my beliefs 1 and 2 are valid, like all other beliefs.
- However, statement 1 contradicts your statement and by 2 they are incompatible, therefore your statement is logically absurd
By explicitly making the two statements incompatible, this problem is removed. Obscurans 10:57, 23 October 2006 (UTC)
- Ridiculous. If you don't accept that something can't be both true and false (in the same sense, at the same time) you're simply not in the business of being rational in the first place. PurplePlatypus 23:13, 13 December 2006 (UTC)