Rayleigh distribution

From Wikipedia, the free encyclopedia

Rayleigh
Probability density function
Plot of the Rayleigh PDF
Cumulative distribution function
Plot of the Rayleigh CDF
Parameters \sigma>0\,
Support x\in [0;\infty)
Probability density function (pdf) \frac{x \exp\left(\frac{-x^2}{2\sigma^2}\right)}{\sigma^2}
Cumulative distribution function (cdf) 1-\exp\left(\frac{-x^2}{2\sigma^2}\right)
Mean \sigma \sqrt{\frac{\pi}{2}}
Median \sigma\sqrt{\ln(4)}\,
Mode \sigma\,
Variance \frac{4 - \pi}{2} \sigma^2
Skewness \frac{2\sqrt{\pi}(\pi - 3)}{(4-\pi)^{3/2}}
Excess Kurtosis -\frac{6\pi^2 - 24\pi +16}{(4-\pi)^2}
Entropy 1+\ln\left(\frac{1}{\sqrt{2}\sigma^3}\right)+\frac{\gamma}{2}
mgf 1+\sigma t\,e^{\sigma^2t^2/2}\sqrt{\frac{\pi}{2}} \left(\textrm{erf}\left(\frac{\sigma t}{\sqrt{2}}\right)\!+\!1\right)
Char. func. 1\!-\!\sigma te^{-\sigma^2t^2/2}\sqrt{\frac{\pi}{2}}\!\left(\textrm{erfi}\!\left(\frac{\sigma t}{\sqrt{2}}\right)\!-\!i\right)

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution. It usually arises when a two-dimensional vector (e.g. wind velocity) has its two orthogonal components normally and independently distributed. The absolute value (e.g. wind speed) will then have a Rayleigh distribution. The distribution may also arise in the case of random complex numbers whose real and imaginary components are normally and independently distributed. The absolute value of these numbers will then be Rayleigh-distributed.

The probability density function is

f(x|\sigma) = \frac{x \exp\left(\frac{-x^2}{2\sigma^2}\right)}{\sigma^2}.

The characteristic function is given by:

\varphi(t)=
1\!-\!\sigma te^{-\sigma^2t^2/2}\sqrt{\frac{\pi}{2}}\!\left(\textrm{erfi}\!\left(\frac{\sigma t}{\sqrt{2}}\right)\!-\!i\right)

where \operatorname{erfi}(z) is the complex error function. The moment generating function is given by

M(t)=\,
1+\sigma t\,e^{\sigma^2t^2/2}\sqrt{\frac{\pi}{2}} \left(\textrm{erf}\left(\frac{\sigma t}{\sqrt{2}}\right)\!+\!1\right),

where erf(z) is the error function. The raw moments are then given by

\mu_k=\sigma^k2^{k/2}\,\Gamma(1+k/2)\,

where Γ(z) is the Gamma function. The moments may be used to calculate:

Mean: \sigma \sqrt{\frac{\pi}{2}}

Variance: \frac{4-\pi}{2} \sigma^2

Skewness: \frac{2\sqrt{\pi}(\pi - 3)}{(4-\pi)^{3/2}}

Kurtosis: - \frac{6\pi^2 - 24\pi +16}{(4-\pi)^2}

[edit] Parameter estimation

The maximum likelihood estimate of the σ parameter is given by

\sigma\approx\sqrt{\frac{1}{2N}\sum_{i=0}^N x_i^2}.

[edit] Related distributions

[edit] See also

Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BernoullibinomialBoltzmanncompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomial
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-squareinverse gaussianinverse gammaKumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)ParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVoigtvon MisesWeibullWigner semicircleWilks' lambda DirichletKentmatrix normalmultivariate normalvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular
In other languages