Talk:Raman spectroscopy
From Wikipedia, the free encyclopedia
Can somebody explain what a "virtual energy state" is? How is this distinct from a "true" energy transition (presumably one where the electrons are moved to an excited state)?
What does it mean that "The fingerprint region of organic molecules is in the range 500-2000 /cm"? If wavelengths are in units of length then why is the "fingerprint" given in inverse length?
Spectroscopists a weird bunch and as such decide to use wierd units, in this case the Wavenumber. They also tend to use the terms energy, wavelength, wavenumber and frequency interchangebly, since they all are related to energy. In Raman spectroscopy what is measured is the difference in energy between the scattered light and the excitation source, and the amount of energy involved is characteristic of a particular bond. For example, silicon has a primary band (or peak) at a Raman shift of about 520 /cm, and that is irrespective of the wavelength of the laser. A skilled spectroscopist will be able to tell simply from looking at a spectrum the major components of a sample as certain bands and features tend to correspond to specific Functional_groups --Wound 22:50, 4 Apr 2005 (UTC)
This article could use some reorganizing: history should come before applications and applications should be merged with Raman microspectroscopy, other types, and see also. Additionally, at least in the RR article, there is a significant amount of repeated information, which may be more appropriately placed the main Raman article. Finally, the theory section should be expanded or an advance theory section should be added to do this topic justice.--Bjsamelsonjones