Raised cosine

From Wikipedia, the free encyclopedia

In mathematics, the raised cosine is a function commonly used in wireless communications:

\mathbf{X}(\omega) = \left \{ \begin{matrix} 1/f_0, & \left|\omega\right| \le \omega_1 \\  \\  \frac{0.5}{f_0} \left[1 + \cos\left(\frac{\left|\omega\right| - \omega_1}{2 \alpha f_0}\right)\right], & \omega_1 < \left|\omega\right| < \omega_2 \\  \\ 0, & \left|\omega\right| > \omega_2 \end{matrix} \right.

with the following inverse Fourier transform:

\mathbf{x}(t) = \mathrm{sinc}(f_0 t)\cdot \frac{\cos\left(\pi \alpha f_0 t\right)}{\left[1 - \left(2 \alpha f_0 t\right)^2\right]}

where:

  • sinc(x) is the normalized sinc function
  • \alpha \in \left[0, 1\right]
  • f_0=\frac{1}{T}, Tbeing the pulse length
  • \omega \in \left(-\infty, \infty \right) radians
  • \omega_1 = \left(1 - \alpha\right) \pi f_0
  • \omega_2 = \left(1 + \alpha\right) \pi f_0

For this function, α acts as a spreading parameter in the frequency spectrum of \mathbf{X}(\omega). If α = 0 then \mathbf{x}(t) becomes the sinc function.

[edit] Sample plot

Color f0 α
Black 2 1
Blue 2 0.75
Red 2 0.5
Green 2 0.25
Purple 2 0

The above table maps the plots shown to the parameters used to generate the plot. Things to notice:

  • For α = 0 the function is the sinc function
  • As α decreases the more the plot looks like a sinc function
  • All plots go through y = 1 at x = 0
  • All plots have the same roots, which is a function of f0
  • All of the roots are multiples of \frac{1}{f_0}