Quater-imaginary base
From Wikipedia, the free encyclopedia
Numeral systems by culture | |
---|---|
Hindu-Arabic numerals | |
Western Arabic Eastern Arabic Khmer |
Indian family Brahmi Thai |
East Asian numerals | |
Chinese Japanese |
Korean |
Alphabetic numerals | |
Abjad Armenian Cyrillic Ge'ez |
Hebrew Ionian/Greek Sanskrit |
Other systems | |
Attic Etruscan Roman |
Babylonian Egyptian Mayan |
List of numeral system topics | |
Positional systems by base | |
Decimal (10) | |
2, 4, 8, 16, 32, 64, 128 | |
3, 9, 12, 24, 30, 36, 60, more… | |
The quater-imaginary numeral system was first proposed by Donald Knuth in 1955, in a submission to a high-school science talent search. It is a non-standard positional numeral system which uses the imaginary number 2i as base. By analogy with the quaternary numeral system, it is able to represent every complex number using only the digits 0, 1, 2, and 3, without a sign.
Contents |
[edit] Powers of 2i
n | (2i)n |
---|---|
−8 | 1/256 |
−7 | 1/128 i |
−6 | −1/64 |
−5 | −1/32 i |
−4 | 1/16 |
−3 | 1/8 i |
−2 | −1/4 |
−1 | −1/2 i |
0 | 1 |
1 | 2i |
2 | −4 |
3 | −8i |
4 | 16 |
5 | 32i |
6 | −64 |
7 | −128i |
8 | 256 |
[edit] Decimal to quater-imaginary
Base 10 | Base 2i | Base 10 | Base 2i | Base 10 | Base 2i | Base 10 | Base 2i |
---|---|---|---|---|---|---|---|
1 | 1 | −1 | 103 | 1i | 10.2 | −1i | 0.2 |
2 | 2 | −2 | 102 | 2i | 10.0 | −2i | 1030.0 |
3 | 3 | −3 | 101 | 3i | 20.2 | −3i | 1030.2 |
4 | 10300 | −4 | 100 | 4i | 20.0 | −4i | 1020.0 |
5 | 10301 | −5 | 203 | 5i | 30.2 | −5i | 1020.2 |
6 | 10302 | −6 | 202 | 6i | 30.0 | −6i | 1010.0 |
7 | 10303 | −7 | 201 | 7i | 103000.2 | −7i | 1010.2 |
8 | 10200 | −8 | 200 | 8i | 103000.0 | −8i | 1000.0 |
9 | 10201 | −9 | 303 | 9i | 103010.2 | −9i | 1000.2 |
10 | 10202 | −10 | 302 | 10i | 103010.0 | −10i | 2030.0 |
11 | 10203 | −11 | 301 | 11i | 103020.2 | −11i | 2030.2 |
12 | 10100 | −12 | 300 | 12i | 103020.0 | −12i | 2020.0 |
13 | 10101 | −13 | 1030003 | 13i | 103030.2 | −13i | 2020.2 |
14 | 10102 | −14 | 1030002 | 14i | 103030.0 | −14i | 2010.0 |
15 | 10103 | −15 | 1030001 | 15i | 102000.2 | −15i | 2010.2 |
16 | 10000 | −16 | 1030000 | 16i | 102000.0 | −16i | 2000.0 |
[edit] Examples
[edit] References
- D. Knuth. The Art of Computer Programming. Volume 2, 3rd Edition. Addison-Wesley. pp. 205, "Positional Number Systems"