Quantitative research
From Wikipedia, the free encyclopedia
Quantitative research is the systematic scientific investigation of quantitative properties and phenomena and their relationships. Quantitative research is widely used in both the natural and social sciences, including physics, biology, psychology, sociology, geology, education, and journalism. The objective of quantitative research is to develop and employ mathematical models, theories and hypotheses pertaining to natural phenomena. The process of measurement is central to quantitative research because it provides the fundamental connection between empirical observation and mathematical expression of quantitative relationships.
The term quantitative research is most often used in the social sciences in contrast to qualitative research.
Contents |
[edit] Overview and background
Quantitative research is generally approached using scientific methods which include:
-
- The generation of models, theories and hypotheses
- The development of instruments and methods for measurement
- Experimental control and manipulation of variables
- Collection of empirical data
- Modelling and analysis of data
- Evaluation of results
Quantitative research is often an interative process whereby evidence is evaluated, theories and hypotheses are refined, technical advances are made, and so on. Virtually all research in physics is quantitative whereas research in other scientific disciplines, such as taxonomy and anatomy, may involve a combination of quantitative and other analytic approaches and methods.
In the social sciences particularly, quantitative research is often contrasted with qualitative research, which is the examination, analysis and interpretation of observations for the purpose of discovering underlying meanings and patterns of relationships, including classifications of types of phenomena and entities, in a manner that does not involve mathematical models. Approaches to quantitative psychology were first modelled on quantitative approaches in the physical sciences by Gustav Fechner in his work on psychophysics, which built on the work of Ernst Heinrich Weber. Although a distinction is commonly drawn between qualitative and quantitative aspects of scientific investigation, it has been argued that the two go hand in hand. For example, based on analysis of the history of science, Kuhn (1961, p. 162) concludes that “large amounts of qualitative work have usually been prerequisite to fruitful quantification in the physical sciences”. Qualitative research is often used to gain a general sense of phenomena and to form theories that can be tested using further quantitative research. For instance, in the social sciences qualitative research methods are often used to gain better understanding of such things as intentionality (from the speech response of the researchee) and meaning (why did this person/group say something and what did it mean to them?).
Although quantitative investigation of the world has existed since people first began to record events or objects that had been counted, the modern idea of quantitative processes have their roots in Auguste Comte's Positivist framework.
[edit] Statistics in quantitative research
Statistics is the most widely used branch of mathematics in quantitative research outside of the physical sciences, and also finds applications within the physical sciences, such as in statistical mechanics. Statistical methods are used extensively within fields such as economics, social sciences and biology. Quantitative research using statistical methods typically begins with the collection of data based on a theory or hypothesis, followed by the application of descriptive or inferential statistical methods. Causal relationships are studied by manipulating factors thought to influence the phenomena of interest while controlling other variables relevant to the experimental outcomes. In the field of health, for example, researchers might measure and study the relationship between dietary intake and measurable physiological effects such as weight loss, controlling for other key variables such as exercise. Quantitatively based opinion surveys are widely used in the media, with statistics such as the proportion of respondents in favor of a position commonly reported. In opinion surveys, respondents are asked a set of structured questions and their responses are tabulated. In the field of climate science, researchers compile and compare statistics such as temperature or atmospheric concentrations of carbon dioxide.
Empirical relationships and associations are also frequently studied by using some form of General linear model, non-linear model, or by using factor analysis. A fundamental principle in quantitative research is that correlation does not imply causation. This principle follows from the fact that it is always possible a spurious relationship exists for variables between which covariance is found in some degree. Associations may be examined between any combination of continuous and categorical variables using methods of statistics.
[edit] Measurement in quantitative research
Views regarding the role of measurement in quantitative research are somewhat divergent. Measurement is often regarded as being only a means by which observations are expressed numerically in order to investigate causal relations or associations. However, it has been argued that measurement often plays a more important role in quantitative research. For example, Thomas Kuhn (1961) argued that results which appear anomalous in the context of accepted theory potentially lead to the genesis of a search for a new, natural phenomenon. He believed that such anomalies are most striking when encountered during the process of obtaining measurements, as reflected in the following observations regarding the function of measurement in science:
- When measurement departs from theory, it is likely to yield mere numbers, and their very neutrality makes them particularly sterile as a source of remedial suggestions. But numbers register the departure from theory with an authority and finesse that no qualitative technique can duplicate, and that departure is often enough to start a search (Kuhn, 1961, p. 180).
In classical physics, the theory and definitions which underpin measurement are generally deterministic in nature. In contrast, probabilistic measurement models known as the Rasch model and Item response theory models are generally employed in the social sciences. Psychometrics is the field of study concerned with the theory and technique for measuring social and psychological attributes and phenomena. This field is central to much quantitative research that is undertaken within the social sciences.
Quantitative research may involve the use of proxies as stand-ins for other quantities that cannot be directly measured. Tree-ring width, for example, is considered a reliable proxy of ambient environmental conditions such as the warmth of growing seasons or amount of rainfall. Although scientists cannot directly measure the temperature of past years, tree-ring width and other climate proxies have been used to provide a semi-quantitative record of average temperature in the Northern Hemisphere back to 1000 A.D. When used in this way, the proxy record (tree ring width, say) only reconstructs a certain amount of the variance of the original record. The proxy may be calibrated (for example, during the period of the instrumental record) to determine how much variation is captured, including whether both short and long term variation is revealed. In the case of tree-ring width, different species in different places may show more or less sensitivity to, say, rainfall or temperature: when reconstructing a temperature record there is considerable skill in selecting proxies that are well correlated with the desired variable.
[edit] Examples of Quantitative research
- Research that consists of the percentage amounts of all the elements that make up our atmosphere
- Protest/Survey which concludes that the average patient has to wait 2 hours in the waiting room of a certain doctor before being selected.
- An experiment in which group x was given two tablets of Aspirin a day and Group y was given two tablets of Tylenol a day where each participant is randomly assigned to one or other of the groups.
The numerical factors such as two tablets, percent of elements and the time of waiting makes the situations and results quantitatives