Q-Vandermonde identity

From Wikipedia, the free encyclopedia

The q-Vandermonde identity is the q-analogue of the Chu-Vandermonde identity

\begin{bmatrix} m + n\\ k \end{bmatrix}_q = \sum_{j}  \begin{bmatrix} m\\ k - j \end{bmatrix}_q \begin{bmatrix} n\\ j \end{bmatrix}_q q^{j(m-k+j))}

The proof follows from observing the q-binomial identity with q-commuting operators (namely BA = qAB).

[edit] Proof

Assume that A and B are operators that q-commute:

BA = qAB\,

Then:

(A + B)^m(A + B)^n \,
= (\sum_{i=0}^m \begin{bmatrix} m\\ i \end{bmatrix}_{q}A^{i}B^{m-i}) (\sum_{j=0}^n \begin{bmatrix} n\\ j \end{bmatrix}_{q}A^{j}B^{n-j})
= \sum_{i,j} \begin{bmatrix} m\\ i \end{bmatrix}_q \begin{bmatrix} n\\ j \end{bmatrix}_{q}A^{i}B^{m-i}A^{j}B^{n-j}
= \sum_{i,j} \begin{bmatrix} m\\ i \end{bmatrix}_q \begin{bmatrix} n\\ j \end{bmatrix}_{q}q^{j(m-i)}A^{i+j}B^{m+n-i-j}

This makes use of the fact that

BA^2 = BAA = qABA = q^2AAB = q^2A^2B. \,

Now, consider the coefficient of A^{k}B^{n-k}\, in this expression. This gives:

\sum_{j} \begin{bmatrix} m\\ k-j \end{bmatrix}_q \begin{bmatrix} n\\ j \end{bmatrix}_{q}q^{j(m-k+j)}

Now, from the q-binomial theory, we recognize that (A+B)^m(A+B)^n=(A+B)^{m+n}\, And thus, the coefficient of A^{k}B^{n-k}\, is

\begin{bmatrix} m+n\\ k \end{bmatrix}_q

Combining the results gives:

\begin{bmatrix} m + n\\ k \end{bmatrix}_q = \sum_{j}  \begin{bmatrix} m\\ k - j \end{bmatrix}_q \begin{bmatrix} n\\ j \end{bmatrix}_q q^{j(m-k+j))}.

QED\,