Talk:Proof that 22 over 7 exceeds π
From Wikipedia, the free encyclopedia
There are plenty of pages that involve math on Wikipedia. Why is this one getting so much attention? There is no rule that all encyclopedia articles must be accessible to all people.
"The following argument will be readily understood by persons with no knowledge of mathematics beyond first-year calculus. "
Well, what about those of us who don't even have that? It's all just funny looking symbols to me :) Adam Bishop 03:25, 29 Nov 2003 (UTC)
- Well, "simple" is a subjective term. I don't think its possible to give a simpler proof than this, because even defining π involves calculus (the length of a curve is the limit of a sum, an integral). -- Arvindn 03:52, 29 Nov 2003 (UTC)
-
- The only part I had trouble with was that... I'm not sure what its called... curly thing with the 1 and 0 Nat2 23:04, 2 February 2006 (UTC)
I suspect that any reasonable proof of the same proposition that avoids knowledge of calculus would be more complicated. As for calculus being involved in defining π, if someone who knows no calculus asks me what π is, I would not hesitate to answer that it is the ratio of a circle's circumference to its diameter; multiply the diameter by π to get the circumference. Michael Hardy 21:26, 29 Nov 2003 (UTC)
- Do you know a (formal) definition of circumference that doesn't involve integration? If not, what I said still holds, doesn't it? -- Arvindn 03:27, 30 Nov 2003 (UTC)
-
- It can be formally defined in terms of the limit of circumferences of polyhedra. This does need the notion of a limit, but not the fully machinery of integral calculus. However, since the formalization of the limit was done precisely to facilitate the development of calculus, the distinction is perhaps not a strong one in the history of formalism. However, in the history of Pi the earliest estimates of Pi make informal use of limits, but not of integration. (BTW, thanks for the name change from A very elementary...) ~ Jeff 18:33, 1 Dec 2003 (UTC)
Many characterizations of π do not mention integration. Which among them should be considered definitions is perhaps a subtler question. The notion of limit is not really needed, since one can say simply that it's the least upper bound of the set of all perimeters of inscribed polygons. Michael Hardy 21:40, 1 Dec 2003 (UTC)
If we use the continued fraction as definition, the proof is even simplier!!!wshun 21:49, 1 Dec 2003 (UTC)
How can the continued fraction be used as a definition? Somehow, you would have to say which continued fraction you're talking about without relying on some prior characterization of π. Michael Hardy 21:55, 1 Dec 2003 (UTC)
To elaborate a bit further on the point above: It is not as simple to understand how it is known that π = 3.1415926535... or that π = a certain continued fraction, as it is to learn calculus and then read this Wikipedia article. Michael Hardy 01:12, 2 Dec 2003 (UTC)
So, where does one go to brush up on the fact that integrating 1/(1 + x2) yields arctan? I had added a link to a page that included the formula, but it was removed. ~ Jeff 03:23, 4 Dec 2003 (UTC)
- I suspect there may be a page that covers it, but I will add it to trigonometric substitution. Some of the calculus pages on Wikipedia have lots of problems. Michael Hardy 20:52, 4 Dec 2003 (UTC)
-
- Thanks. Jake
So how many edges would a regular polygon (centre O, vertex V, edge bisector P) need before the ratio of the perimeter to OP was less than 22/7 ? That proof would not require caluclus, nor even limits, but only trigonometry. mike40033 03:01, 2 Apr 2004 (UTC)
- oops. I meant, the ratio of the perimeter to 2*OP should be less than 22/7. Anyway, the answer is n=91. Using n = 96 and only trigonometry should yield a proof (with no calculus) that pi is less than 22/7. But I don't think the proof would count as "simple"
Contents |
[edit] title
the title of the page says π , not π , somebody should fix that!
- I've change the name to "A simple proof that 22/7 exceeds Pi" hopefully I changed all the links correctly ;-) Paul August 21:14, Jul 23, 2004 (UTC)
-
- And now I've moved it to "a simple proof that 22/7 exceeds pi" (with a lower-case "p" in "pi") as a compromise. Until a couple of days ago, the π in the title looked like the lower-case Greek letter. I don't know why that changed. I'll look into it. But probably not today. Michael Hardy 23:53, 23 Jul 2004 (UTC)
- I disagree with the title - its meant to be ironic. It should be obvious that ironic titles are not NPOV.-SV
- I don't think the title is meant to be ironic. Why do you say this? Paul August 11:18, Jul 25, 2004 (UTC)
- I disagree with the title - its meant to be ironic. It should be obvious that ironic titles are not NPOV.-SV
- And now I've moved it to "a simple proof that 22/7 exceeds pi" (with a lower-case "p" in "pi") as a compromise. Until a couple of days ago, the π in the title looked like the lower-case Greek letter. I don't know why that changed. I'll look into it. But probably not today. Michael Hardy 23:53, 23 Jul 2004 (UTC)
I am the person who named the article originally. I did not intend irony! It's just a prosaic descriptive title. Michael Hardy 01:52, 1 Aug 2004 (UTC)
It is a tricky one because the page plainly isn't simple if you are not mathematican (so don't feel bad Steve :)), however the reason for the pages existence is that it proves something about pi without relying on "heavy machinery" (at this point you kinda have to take it on trust that despite appearances all the machinery is fairly lightweight. And without some suitable adjective (we had elementary before, but that evokes the same probs as simple) in the title this raison d'etre gets lost. I vote that we merge into pi then the problem goes away. Pcb21| Pete 17:34, 26 Jul 2004 (UTC)
- The proof uses only high school maths, so I think it deserves to be called "simple". Gdr 17:46, 2004 Jul 26 (UTC)
-
-
- By teaching these others some simple calculus? Or perhaps by expanding the Pi#Numerical approximations to pi section to a new article with discussions of the techniques used to establish approximations to π such as Archimedes' inscribed/circumscribed polygon method. This page could then be merged and redirected. Gdr 19:35, 2004 Jul 26 (UTC)
-
Simple is a comparative term. As compared to all other mathematical proofs this one is extremely simple. Even in the context of proofs in a high school calculus class it is quite simple. It is simple because:
- It is short
- It is straight forward (no twists and turns)
- It uses only basic mathematical tools (i. e.
high school leveladvanced high school level (see below Paul August 23:49, Sep 12, 2004 (UTC)))
However because it is a "simple proof", does not mean it is necessarily "simple to understand". It is simple to understand if you know calculus. If not then not only is it not simple (to understand) it is impossible. In which case, calling it a "hard proof" (to understand) would also be misrepresentative. Paul August 19:59, Jul 26, 2004 (UTC)
- I don't think anyone has suggested that calling it a hard proof would help. I repeat, I understand why mathematicians call this proof simple/elementary. Those words (simple/elemnentary) convey a special meaning to all mathematicians from first year college level up. However outsiders do not have that mathematical experience or "culture" if you like. This is not mathepedia. Calling it a simple proof can all too easily, in the eyes of the general reader, create an impression of arrogrance and aloofness. An impression we are not doing too well in dispelling on this talk page! Pcb21| Pete 22:39, 26 Jul 2004 (UTC)
-
- Yes, you are right Pete, no one has suggested calling it a "hard proof", that wasn't my point. My point was, that the word simple, in this case, is being used to describe an objective property about this proof, namely it's brevity, directness and (as you put it very well above) it's lack of "heavy machinery" - rather than a subjective property concerning it's ease of understanding. I agree that this distinction might not be clear to every reader, and therefor the title might be misunderstood. This might point out the need for a better title, but I can't think of one. One could try to be more explicit, by " A short, direct proof that 22/7 exceeds pi, using only high school calculus" but this strikes me as inelegant. Paul August 16:58, Jul 27, 2004 (UTC)
- (An aside, you say this proof is about a simple a proof as you can get - I would say that a geometric proof of Pythagaras would be simpler still. In its way Euclid's proof of infinity of primes is simpler too). Just some examples. Pcb21| Pete 22:39, 26 Jul 2004 (UTC)
-
- I agree with you Pete, there are many proofs even simpler than this one ;-) Paul August 16:58, Jul 27, 2004 (UTC)
There are many proofs that are simpler than this one, but are the any proofs of this proposition that are simpler than this one? Michael Hardy 01:56, 1 Aug 2004 (UTC)
[edit] High School?
I would be very curious to know where most of you went to high school. In the U.S., even simple calculus is not commonly thought of as a high school level math. It is taught in high schools, but the majority of students don't take it, ie: it is usually offered as an advanced elective course, and often under a name like pre-calculus or as a part of elementary functions, etc. To the average U.S. citizen, calculus is a college-level math. Indeed, the very small percentage of eggheads...er, students who take calculus in high school are commonly said to be doing college level work. func(talk) 01:41, 12 Sep 2004 (UTC)
- That is true, but for the most part, people reading this article probably did take advanced courses in math, or are naturally curious (in that case, more power to 'em). Just wondering, does anyone know when this integral was a Putnam problem? Jonpin 01:03, Oct 2, 2004 (UTC)
-
- I think it was at least 25 years ago. Michael Hardy 22:02, 2 Oct 2004 (UTC)
-
-
- According to John Scholes' archive [1], it was 1968. Mindspillage 02:38, 24 Dec 2004 (UTC)
-
There is a tradition by which differential and integral calculus is the first college math course. But in recent decades, it has frequently been available to high-school students. Most members of that "vast majority" who don't take calculus in high school never go into a field where they need mathematics anyway, so they're not really relevant to this discussion. Perhaps most college students who take calculus don't take it as their first college math course, but most of those are also not people who go into fields where they think about math daily, so they're not really relevant to this discussion either. Michael Hardy 21:18, 12 Sep 2004 (UTC)
Michael said: "Most members of that "vast majority" who don't take calculus in high school never go into a field where they need mathematics anyway"
- That may be true at MIT or Berkeley or other elite schools, but for the rest of us, it's not uncommon at all to see many math and science majors taking calculus for the first time in college, so your own experiences may be clouding your conclusion, here. Revolver 02:59, 9 September 2005 (UTC)
Ok, not "high school level" but "advanced high school level", I stand corrected ;-) Paul August 23:50, Sep 12, 2004 (UTC)
[edit] 0 < integral of [x^4(1-x)^4/(1+x^2)] from 0 to 1 = 22/7-pi
/ \
| | | |
That's not very simple!
-
- It's a routine calculus problem. One expects secondary-school students to do such problems in a couple of minutes. Sheesh. Michael Hardy 22:46, 14 Mar 2005 (UTC)
-
- I don't think so. I never said one expects this of all high-school students. But at typical high schools, there are some students who take calculus, and are expected to evaluate integrals. Some of those integrals are challenging, but for this one you just plod through the steps mechanically and you've got it. Michael Hardy 03:40, 2 April 2006 (UTC)
[edit] statement
Although many people know this numerical value of π from school, far fewer know how to compute it.
- I have no idea what this sentence is supposed to mean, or how it is supposed to relate to the rest of the introduction. Revolver 03:10, 9 September 2005 (UTC)
I don't understand what's puzzling about it. Many people know that π is about 3.14159... etc. But few know where that came from, i.e. if you're stranded on a desert island and need to know the first ten digits of π and have only paper and pencils, how would you compute them. How do you find something hard to understand in that? Michael Hardy 03:41, 2 April 2006 (UTC)
[edit] Question
Does anyone have any idea what's going on behind this result? I will clarify what I mean, and if anyone knows an answer to my question, it might belong in the article. Those who don't know calculus might not get much out of what I have to ask - sorry about that. I certainly don't advocate making the article more confusing, so if that's the only possible result of this, let's drop it. At this stage though, it can't hurt to ask the question, which follows without further ado:
The integrand expands to a polynomial minus 4*arctan(x). That polynomial is p(x) = x6 - 4x5 + 5x4 - 4x2 + 4. Have a look at a graph of that integrand - it's rather symmetrical. That prettiness leads me to believe that p(x) is some kind of canonical approximation of the function 4*arctan(x), and not just a polynomial that happens to equal 22/7 at x = 1. It's not a Taylor approximation, or it would be closest at one point and diverge on either side. What is it, and is there a reason based on numerical approximation theory that one would be certain it's an over-approximation, and that its error should have such a pretty factorization? -GTBacchus(talk) 06:26, 28 November 2005 (UTC)
- GTBacchus has clarified on my talk page that it is p(x) - 4/(1+x) that is symmetrical — in the range [0,1]. Also, p(x) could only approximate 4/(1+x2), not 4*arctan(x). -- Paddu 18:31, 18 March 2006 (UTC)
[edit] Details of Archimedes' Proof
There are, obviously, many different proofs for this result. While this page was loading up, I was fully expecting to see the Archimedean proof given here; it is obviously the most historic and arguably the most notable proof. I think the article would gain from having that proof reproduced here more fully. The proof presented is certainly notable, it a proof I have seen before (and indeed, I am sure far more people have seen the details of this proof than Archimedes') but I have only seen it given as a piece of "fun" maths, an exceptionally elegant method that is presented for instructive purposes on the topics of calculus and polynomial long division, with the interesting historical backdrop that 22/7 was a classical approximation to Pi. Archimedes' proof, on the other hand, was a serious (and relatively important) piece of mathematical research, so it seems a little unbalanced to cover it with a one sentence summary! On a slightly different note, it would be really nice to know who discovered, or at least first published, the particular integral given here; it would add a lot to the context of the article. TheGrappler 13:58, 19 March 2006 (UTC)
[edit] Move suggestion
Does anyone object if I move this article to 22/7 (number)? The article is really about the number; the proof that it exceeds pi is interesting & notable because 22/7 is an important approximation of pi. It was suggested on the AfD debate that the article be renamed, and this seems like the best suggestion to me. Mangojuice 15:48, 20 March 2006 (UTC)
- I object. The article is about the proof, not the number. I can't make heads or tails of your reason for disagreeing. We might as well argue that the Pythagorean theorem article is really about right triangles so should be moved to right triangle. --Chan-Ho (Talk) 01:02, 21 March 2006 (UTC)
- I think the best is to keep the main part of the article (proof part), and merge some of the introduction as a stub at 22/7 (number). Certainly a lot more could be written about 22/7 and its historical importance. But the rest of the article should be here.--Chan-Ho (Talk) 01:06, 21 March 2006 (UTC)
I don't think this should be moved to that title.
I also don't think Archimedes' proof should appear here. Perhaps a separate article on Archimedes' computation of π should be created if it does not already exist. The reason why it should not be in this article is that this article is really about a particular method rather than about the bottom-line result. If the title doesn't make that clear, perhaps another could be found. Michael Hardy 21:06, 20 March 2006 (UTC)
I am in favour of this move. In the AfD discussion this renaming was suggested by AySz88 and me, deemed acceptable by Fg2 and GTBacchus, and opposed by Oleg Alexandrov. I still think this is a better name for the article, even though (currently) the proof takes up the better part. The way the article is written, it is already "about" 22/7; the only thing that needs to change is the title. The proof is only "notable" because 22/7 is a widely used approximation of π, so it derives its importance from 22/7. An equally straightforward proof that 85/27 exceeds pi would not be interesting, would it? LambiamTalk 00:39, 21 March 2006 (UTC)
-
-
-
- No, a proof that 85/27 would probably not be as interesting. 85/27 is actually further from π than 22/7 despite the fact that the denominator, 27, is bigger than the other denominator, 7. You can't come closer to π than 22/7 with any rational number until the denominator is actually more than 100. I think the fact that 22/7 is a convergent in the continued fraction is relevant here. Michael Hardy 04:02, 30 March 2006 (UTC)
-
-
- I would have to see the proof that 85/27 exceeds pi in order to deem it interesting or not. Much of the interest of this proof is because of certain mathematical aspects of the proof. --Chan-Ho (Talk) 01:02, 21 March 2006 (UTC)
-
-
- -- Paddu 08:10, 1 April 2006 (UTC)
-
[edit] Don't move to "22/7"
This article is not primarily about that number. It's about the fact that this proof is though-provoking and causes one to suspect some deeper and enlightening fact is a large iceberg whose tip is this argument. Michael Hardy 04:07, 30 March 2006 (UTC)
[edit] Am I "hostile"?
Does it constitute "hostility" or "vitriol" or some of those other characterizations of some of my responses on the AfD page if I say clearly that people who know nothing about a subject should not pontificate about it as if they are authorities? If one "assumes good faith" initially, must one continue to assume good faith when people do that? Is that sort of behavior consistent with "good faith"? Michael Hardy 21:06, 20 March 2006 (UTC)
- I have no context regarding the comment you make, as I'm new to this. However, keep in mind that an expertise in math does not equate to an expertise on the editing of encyclopedia articles, even ones on mathematics (no doubt they will be authoritative regarding matters of factual accuracies in an article, but an encyclopedia article's quality is more than just that). Also keep in mind that an encyclopedia is different from a paper you might published in a math journal or a textbook you might write; different goals and standards apply.
- You are free to make you own judgment about "good faith" and "bad faith" as you see fit. Of course, if this judgment is somehow involved in a dispute or discussion, obvious some may agree and others disagree. 131.107.0.73 00:51, 15 June 2006 (UTC)
[edit] Discussion on recent edits on June 2006
I forgot to add this in my edit comments, and since your recent revert was so broad I don't really know which part you are actually trying to revert:
Based on your edit summary for the revert, I would like to point out that the "citation needed" template is tagging this specific sentence:
"It is easier than most Putnam Competition problems, but the competition often features seemingly obscure problems that turn out to refer to something very familiar."
I don't believe the first link in the external link section (which you mentioned in the edit summary) makes any claim about "seeming obscure problems that turn out to refer to something very familiar". Without a citation this sentence is subjective and cannot be included in an encyclopedia, no matter how accurate the case might be. 131.107.0.73 23:51, 14 June 2006 (UTC)
- Thank you; this is why such matters should be discussed on the talk page to begin with. You are correct that this statement could use a source; you exaggerate to claim that it is unencyclopedic without one. I'm sure a search of AMM would come up with a statement that this is the intent of the PE, as well as the experience of those who have taken it. Septentrionalis 00:04, 15 June 2006 (UTC)
- First-hand accounts are generally not considered suitable sources, so "as well as the experience of those who have taken it" doesn't matter, no matter how true. If you are sure that the search of AMM will yield a suitable reference, then please do the search and let us know where you find it.
-
- There's also the separate fact that this opinion, again no matter how true, doesn't really add much to the article. The statement seems better placed in the article on PE. So in addition to the missing citation, there's also the issue of whether the setence in issue should even be kept.
-
- Finally, your reverting ignores the fact that I made multiple edits for different purposes. Regarding the edit where I took out the paragraph in the intro, that's because it is POV. Not to mention it is wordy and redundant: if the proof is so simple and beautiful, why not just let the reader see the proof and decide for themselves? 131.107.0.73 00:22, 15 June 2006 (UTC)
- No, in fact, it doesn't. I have considered all the changes; one is now explained, but the others seem valueless. Septentrionalis 00:46, 15 June 2006 (UTC)
- Ok, see below for the discussion on the paragraph in contention. 131.107.0.73 01:12, 15 June 2006 (UTC)
- No, in fact, it doesn't. I have considered all the changes; one is now explained, but the others seem valueless. Septentrionalis 00:46, 15 June 2006 (UTC)
- Finally, your reverting ignores the fact that I made multiple edits for different purposes. Regarding the edit where I took out the paragraph in the intro, that's because it is POV. Not to mention it is wordy and redundant: if the proof is so simple and beautiful, why not just let the reader see the proof and decide for themselves? 131.107.0.73 00:22, 15 June 2006 (UTC)
There's also the fact that the template I put on top of the page is talking about not the lack of sources, but the way the citation is shown. For example in one of the sections, the citation is done by having the text "(see references below)". That doesn't seem like a good style to use for citations. I have leave the tag off for now in case you're talking about something else, but do expect me to either re-add the tag or possibly just make the edits I'm aiming for. 131.107.0.73 23:59, 14 June 2006 (UTC)
- Either fix it, or leave it alone; the purpose of references is to be clear about sourcing, and as long as they fulfill that purpose, all else is Christmas tree decoration. If your calling on Wikipedia is to paint the lily, do so by all means. Septentrionalis 00:04, 15 June 2006 (UTC)
- Ok, but just because I see a problem doesn't mean I have the time or interest to invest to actually fix it; that's what cleanup tags are for. 131.107.0.73 00:22, 15 June 2006 (UTC)
if the proof is so simple and beautiful, why not just let the reader see the proof and decide for themselves?
- That's exactly what I did when I wrote this article originally. Then someone nominated it for deletion, citing the fact that there was no authoritative source attesting to its elegance (as if readers could not see that for themselves). Michael Hardy 00:41, 15 June 2006 (UTC)
- Ok, but since there is already a citation in the reference section to the source you are citing, you paragraph would seem to be duplicating the information.
-
- Rather, the great elegance and simplicity of the argument may serve to make the reader suspect that this is the tip of a deeper iceberg of understanding of the theory.
- Unfortunately, the article provides little context to this "theory" being mentioned. If you are talking about diophantine approximations, the article should better explain the connection of this proof to the theory. Also, this sentence, depend on interpretation, is either making a speculation on how a reader may react, or is trying to make the readers react in a certain way. That would definitely has POV issues (no matter how justified the view) which shouldn't belong in the article. The sentence might warrant being mentioned in the talk pages here as it has more relevance to the debate about the article's importance etc.
- Overall, I would say that it suffice to just keeping these sentences
-
- Lucas (cited below) calls this proposition "One of the more beautiful results related to approximating π". Havil ends a discussion of continued fraction approximations of π with the result, describing it as "impossible to resist mentioning" in that context.
- The rest seems mainly useful in regards to the debate people have about the article's merit and such, and are therefore better off being put in the talk pages here instead. 131.107.0.73 01:12, 15 June 2006 (UTC)
Here's a proposed rewrite of the disputed parts of the intro which I think will serve the intent of those who wrote them, but more in line with Wikipedia standards:
- What follows is a different mathematical proof that 22/7 > π, requiring only an elementary understanding of calculus. It is notable for its connections to the theory of diophantine approximations. Lucas (cited below) calls this proposition "One of the more beautiful results related to approximating π". Havil ends a discussion of continued fraction approximations of π with the result, describing it as "impossible to resist mentioning" in that context.
I don't think we need to say anything in this article about how short and straightforward the proof is. Even amongst mathematicians, "short", "straightforward" and "elegant" are informal terms generally derived from intuition and defying precise definition. That it is "elegant" is probably better expressed by noting (and hopefully better explaining) its connection to diophantine approximations. That it is "short" and "straightforward" is meaningless to those who have little experience with calculus or mathematical proofs anyway, and readily apparent to those who do, so explicitly saying them doesn't really help anyone in that regards. 131.107.0.73 01:21, 15 June 2006 (UTC)
I want to note that I intend to give this discussion about 3 days for initial feedback. If there are no comments at all after that, I will resume editing by substituting the proposed replacement above into the article. Just a hats-up. 131.107.0.73 01:25, 15 June 2006 (UTC)
- I believe this requires some editing, but I will put a version in to see how it looks. Septentrionalis 14:15, 16 June 2006 (UTC)
[edit] Diophantine approximation
It would be useful if Diophantine approximation explained why this gadget works, which it doesn't now; in fact, it's rather stubby. (That is the title, the present link from the article is a redirect.) Septentrionalis 15:36, 16 June 2006 (UTC)
[edit] Equal signs
In the 'details' section, shouldn't those equal signs be less than signs? --Carifio24 21:48, 22 July 2006 (UTC)
-
- Certainly not. Why would you say that? Michael Hardy 22:32, 22 July 2006 (UTC)
-
-
- Don't mind me, I didn't really read the whole thing right...wasn't totally awake. Now I've made myself like a fool, great --Carifio24 00:33, 23 July 2006 (UTC)
-