Talk:Probability theory
From Wikipedia, the free encyclopedia
This page appears to be mostly or entirely redundant with the probability page. I'd suggest that we merge any differences into probability and remove this page. Comments? Wile E. Heresiarch 15:14, 27 Dec 2003 (UTC)
OK, on second thought it does make sense to have a separate page for probability theory. Other pages can refer specifically theoretical issues to the theory page. 128.138.85.48 02:25, 3 Jan 2004 (UTC)
The external link is broken.
Probability Theory shouldn't be included in the Discrete Math Category. Dennis 17:40, 16 Dec 2004 (UTC)
I disagree. First, probability in discrete spaces has peculiar features distinct from continuous spaces. In addition, many of the techniques of finite mathematics such as difference equations, generating functions, and the like, originated in probability theory (a classic survey is Laplace's Analytical Theory of Probability, written in 1812!!) and probability techniques are sometimes important in numbers theory. Finally, using his own version of nonstandard analysis, Edward Nelson reduced all of probability theory (including stochastic processes) to discrete probability spaces(this is in his book Radically Elementary Probability Theory). — Miguel 04:52, 2004 Dec 19 (UTC)
Why is this page so biased towards Bayesian statistics? INic 12:08, 19 October 2005 (UTC)
Contents |
[edit] sequences?
in the explanation of sample space, shouldn't the word "sequence" be "combination" as the order of the Californian voters does not matter?
[edit] important article
In response to the comment about whether this page is the same as the article on probability: this page is certainly not the same as the other article. Kolmogorov's axioms are stated clearly here, and it is important that they are in the Wikipedia. This article is quite good and very important, but it still would benefit from some editing. For example, Ω is the "probability space", while "sample space" S comes into play once a random variable X (or Y or Z or whatever you'd like to name it), which is a measurable function, maps X:Ω→S where S is the space from which we collect samples. What is the difference, one might ask, but truly, this is important mathematically. Ω could be anything. As examples, Ω could be {the people of earth}, {the atoms in the cosmos}, {all 18K gold jewelry or golden crowns}, or any such set of interest. But the sample space S would be something such as, respectively, the set of vectors (height, weight, age) of the people; the set of number of electrons of the atoms and their quantum energy levels; the set of all weights of the golden items. There are some other improvements that are warranted, too. I plan to begin editing the article soon, but will wait for further discussion, so that we can do the best job of doing so as a team. -- MathStatWoman
[edit] Don't use F to mean two completely different things
I'm going to remove all references in this page to F as an event. It will only confuse people later when they see that F is a sigma-algebra. E=>A and F=>B is my suggested universal fix.
[edit] Probability is related to life
The article on probability theory is superficial. It uses jargon, while being disconnected from real life. I believe that the best foundation to theory of probability is laid out here:
The article is accompanied by free software pertinent to probability (combinatorics and statistics as well).
Ion Saliu, Probably At-Large