Talk:Primorial

From Wikipedia, the free encyclopedia

Does anyone know of a reference with details on the sum of inverses of primorials? The sum of inverse integers diverges, sum of inverse primes diverges, sum of inverse factorials converges to e, so it seems possible that the sum of inverse primorials coverges. --Monguin61 09:15, 15 December 2005 (UTC)

I don't know, but common sense would seem to say that it diverges much like the sum of inverse primes does. I will go to the library. Also, I will do some number crunching with Mathematica. Give me a day or two. PrimeFan 19:39, 15 December 2005 (UTC)
I haven't yet gone to the library, but online I've already found a few interesting references on this matter. I recommend Sloane'sA064648 as a starting point. The Mathworld article on primorial mentions the interesting relation \lim_{n \to \infty} p\sharp_n^{1 \over p_n} = e. PrimeFan 22:50, 16 December 2005 (UTC)

[edit] P or NP

Calculating factorials are not polylogarithmic in speed, does this change for calculating primorials?? Also what is the order of growth for primorials, for factorials it is O(e^(Nlog(N))? Ozone 19:23, 15 March 2006 (UTC)

I wonder if its order of order of is known, because aside from the actual primes of primes, one is presented with the predicament of locating the sequence of primes to be multiplied. When it gets to larger numbers, it becomes extremely difficult to locate primes. -- He Who Is[ Talk ] 03:06, 25 June 2006 (UTC)