Pollard's rho algorithm for logarithms

From Wikipedia, the free encyclopedia

Pollard's rho algorithm for logarithms is an algorithm for solving the discrete logarithm problem analogous to Pollard's rho algorithm for solving the Integer factorization problem.

The algorithm computes γ such that αγ = β, where β belongs to the group G generated by α. The algorithm computes integers a, b, A, and B such that αaβb = αAβB. Assuming, for simplicity, that the underlying group is cyclic of order n, we can calculate γ as a solution of the equation (Bb)γ = (aA)(mod n).

To find the needed a, b, A, and B the algorithm uses Floyd's cycle-finding algorithm to find a cycle in the sequence x_i = \alpha^{a_i} \beta^{b_i}, where the function f: x_i \mapsto x_{i+1} is assumed to be random-looking and thus is likely to enter into a loop after approximately \sqrt{\frac{\pi n}{2}} steps. One way to define such a function is to use the following rules: Divide G into three subsets (not necessarily subgroups) of approximately equal size: G0, G1, and G2. If xi is in G0 then double both a and b; if x_i \in G_1 then increment a, if x_i \in G_2 then increment b.

[edit] Algorithm

Let G be a cyclic group of prime order p, and given a,b\in G, and a partition G = G_0\cup G_1\cup G_2, let f:G\to G be a map

f(x) = \left\{\begin{matrix} b\cdot x & x\in G_0\\ x^2 & x\in G_1\\ a\cdot x & x\in G_2 \end{matrix}\right.

and define maps g:G\times\mathbb{Z}\to\mathbb{Z} and h:G\times\mathbb{Z}\to\mathbb{Z} by

g(x,n) = \left\{\begin{matrix} n & x\in G_0\\ 2n \bmod p & x\in G_1\\ n+1 \bmod p & x\in G_2 \end{matrix}\right.

h(x,n) = \left\{\begin{matrix} n+1 \bmod p & x\in G_0\\ 2n \bmod p & x\in G_1\\ n & x\in G_2 \end{matrix}\right.

Inputs a a generator of G, b an element of G
Output An integer x such that ax = b, or failure
  1. Initialise a0 ← 0
    b0 ← 0
    x0 ← 1 ∈ G
    i ← 1
  2. xif(xi-1), aig(xi-1,ai-1), bih(xi-1,bi-1)
  3. x2if(f(x2i-2)), a2ig(f(x2i-2),g(x2i-2,a2i-2)), b2ih(f(x2i-2),h(x2i-2,b2i-2))
  4. If xi = x2i then
    1. rbi - b2i
    2. If r = 0 return failure
    3. x ← r-1(a2i - ai) mod p
    4. return x
  5. If xix2i then ii+1, and go to step 2.

[edit] Example

Consider, for example, the group generated by 2 modulo N = 1019 (the order of the group is n = 1018, 2 generates the group of units modulo 1019). The algorithm is implemented by the following C++ program:

#include <stdio.h>
const int n = 1018, N = n + 1;  // N = 1019 -- prime
const int alpha = 2;            // generator
const int beta = 5;             // 2^{10} = 1024 = 5 (N)
void new_xab(int& x, int& a, int& b){
  switch(x%3){
  case 0: x = x*x % N;     a =  a*2 % n;   b =  b*2 % n;  break;
  case 1: x = x*alpha % N; a = (a+1) % n;                 break;
  case 2: x = x*beta % N;                  b = (b+1) % n; break;
  }
}
int main(){
  int x=1, a=0, b=0;
  int X=x, A=a, B=b;
  for(int i = 1; i < n; ++i){
    new_xab(x, a, b);
    new_xab(X, A, B); new_xab(X, A, B);
    printf("%3d  %4d %3d %3d  %4d %3d %3d\n", i, x, a, b, X, A, B);
    if(x == X) break;
  }
  return 0;
}

The results are as follows (edited):

 i     x   a   b     X   A   B
------------------------------
 1     2   1   0    10   1   1
 2    10   1   1   100   2   2
 3    20   2   1  1000   3   3
 4   100   2   2   425   8   6
 5   200   3   2   436  16  14
 6  1000   3   3   284  17  15
 7   981   4   3   986  17  17
 8   425   8   6   194  17  19
..............................
48   224 680 376    86 299 412
49   101 680 377   860 300 413
50   505 680 378   101 300 415
51  1010 681 378  1010 301 416

That is 26815378 = 1010 = 23015416(mod 1019) and so (416 − 378)γ = 681 − 301(mod 1018), for which γ1 = 10 is a solution as expected. As n = 1018 is not prime, there is another solution γ2 = 519, for which 2519 = 1014 = − 5(mod 1019) holds.

[edit] References

  • J. Pollard, Monte Carlo methods for index computation mod p, Mathematics of Computation, Volume 32, 1978.
  • Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography, Chapter 3, 2001.