Talk:Planck temperature
From Wikipedia, the free encyclopedia
Why does this particular formula reveal the Planck Temperature? Is there some sort of universal formula for temperature of which this is a special case? The Planck temperature is extremely hot -- appearantly, hotter than anything that currently exists in our universe. What are the implications of this (if any)? Ravenswood 20:09, 17 May 2005 (UTC)
[edit] Question about Planck Temperature
If absolute zero represents the lowest possible temperature because particles are not moving relative to each other, what is happening to the particles at the Planck Temperature? Are they moving relative to each other at the speed of light? If so, it may be appropriate to include this information in the article. Kmorford 22:24, 4 June 2006 (UTC)
- They're moving slower than light, but they're more or less at the highest kinetic energy that it makes sense to consider for particles, based on our current understanding of relativity and quantum mechanics. Above the Planck temperature, you'd treat them as black holes, instead. In practice, we expect strange things to happen as this regime is approached, probably resulting either in it being impossible by any means to accelerate particles to higher energies, or in the inevitable decay of the particle into multiple particles of lower energy. There is presently no good description of what happens at these energies. At minimum we'd need a good description of quantum gravity, and for a truly complete description we'd need a theory of everything (as the Planck temperature corresponds to the expected energy scale for unification of all four forces). --Christopher Thomas 01:38, 5 June 2006 (UTC)
[edit] Categorisation
Why is this a unit of temperature? Surely it's just a constant rather than a way in which we can express temperatuares? hitman012 21:55, 1 September 2006 (UTC)
- Planck units were developed to be units, and even if I guess nobody actually measures temperatures in TP it is possible to do that. --Army1987 11:05, 11 November 2006 (UTC)