Talk:Phase modulation
From Wikipedia, the free encyclopedia
hey what is difference between phase modulation and frequency modulation
[edit] ...
yeah... and can someone create a graphic how phase modulation actually looks like?! I have no clue by the information this article gives me.
thanks, --Abdull 22:08, 17 Jan 2005 (UTC)
Hi!
Let w1, w2 be the frequencies of two oscillators and t be the time. Then for a system where the first oscillator is modulated by the second, you could write phase-modulation as:
out[t] = cos(w1 * t + cos(w2 * t));
... whereas frequency-modulation would be:
out[t] = cos( (w1 + cos(w2 * t)) * t);
The famous DX7 and many other socalled FM-synths are all of the phase-modulating kind. The difference shows up for instance when you implement feedback loops:
out[t] = cos(w * t + out[t-1]); // phase-modulated
out[t] = cos((w + out[t-1]) * t); // frequency-modulated
It should be obvious that letting w == 1, will force the frequency-modulated variety to a full stop when out == -1 (that is to say when cos is passing thru its most negative value.) Phase-modulation will instead continue to oscillate at the desired frequency, because the intermediate result of w * t is never affected by the previous output.
Another even simpler example to show the difference between phase- and frequency modulation would be letting w1 == 1 and w2 == 0. The value of cos(w2 * t) will now always be == 1, which gives us:
out[t] = cos(1 * t + 1); // phase-modulated
out[t] = cos((1 + 1) * t); // frequency-modulated
We see here that the frequency-modulated variety will double its frequency, whereas the phase-modulated variety will shift the phase (and then run stable at the desired frequency).
In order to also let the phase-modulated variety double its frequency, we would have to find a function f() such that cos(f()) == t. It might exist, but can by definition only be valid for values of t between 1 and -1.
So to answer Abdulls question: You already know what phase-modulation looks like. For historical reasons (and a programming error) it is well documented disguised as its cousin frequency-modulation. What we need is instead documentation on what frequency-modulation would look like, since it is clearly different.
mvh // Jens M Andreasen
Picture represents frequency modulation! If there is no suitable image, then it's better to remove it rather to show a wrong one. Don't disinform people.
- Nah, the current picture (as of jan 2006) is correct. The carrier slows down when the modulator is in a downward slope. FM would have the carrier slow down when the modulator is near minimum, regardless of direction.
- MX44