Phase-type distribution

From Wikipedia, the free encyclopedia

A phase--type distribution is a probability distribution that results from a system one or more inter-related poisson processes occurring in sequence, or phases. The sequence in which each of the phases occur may itself be a stochastic process. The distribution can be represented by a random variable describing the time until absorption of a Markov Chain with one absorbing state. Each of the states of the Markov Chain represent one of the phases.

The following probability distributions are all considered special cases of a Phase--type distribution:

  • Exponential distribution - 1 phase.
  • Erlang distribution - 2 or more identical phases in sequence.
  • Deterministic distribution (or constant) - The limiting case of an Erlang distribution, as the number of phases become infinite, while the time in each state becomes zero.
  • Coxian distribution - 2 or more (not necessarily identical) phases in sequence, with a probability of transitioning to the terminating/absorbing state after each phase.
  • Hyperexponential - 2 or more non-identical phases, that each have a probability of occurring in a mutually exclusive, or parallel, manner. (Note: The exponential distribution is the degenerate situation when all the parallel phases are identical.)


Contents

[edit] Discrete phase-type distribution

[edit] Definition and theorems

Assume that for m\geq 1 the matrix \mathbf{P} is the transition matrix of a m + 1--state discrete Markov Chain with one absorbing state. Hence, arranging the matrix to have the m + 1--th state as the absorbing one, we will have,

\mathbf{P}=\left[\begin{matrix}\mathbf{T}&\vec\mathbf{T}^0\\\vec\mathbf{0}&1\end{matrix}\right].

Here, \mathbf{T} is a m\times m matrix and \vec\mathbf{T}^0 is a m\times 1 vector. As \mathbf{P} is a stochastic matrix we have,

\vec\mathbf{T}^0+\mathbf{T}\vec\mathbf{1}=\vec\mathbf{1}.

Here, \vec\mathbf{1} is a m\times 1 matrix with all ones as its elements. Continuing with (\ref{eq1}) we have,

\vec\mathbf{T}^0=\left(\mathbf{I}-\mathbf{T}\right)\vec\mathbf{1}.

Hence, if \left(\mathbf{I}-\mathbf{T}\right) is non--singular we will have,

\left(\mathbf{I}-\mathbf{T}\right)^{-1}\vec\mathbf{T}^0=\vec\mathbf{1}.

Here, we prove that \mathbf{I}-\mathbf{T} actually is always non--singular. Assume the contrary case. Hence, there exists a non--zero vector \vec\mathbf{x} for which,

\left(\mathbf{I}-\mathbf{T}\right)\vec\mathbf{x}=\vec\mathbf{0}\Rightarrow\mathbf{T}\vec\mathbf{x}=\vec\mathbf{x}.

Assuming that \vec\mathbf{x}=[x_1,\cdots,x_m] we have,

\forall i, x_i=\sum_{j=1}^n\mathbf{T}_{ij}x_j\Rightarrow \left|x_i\right|=\left|\sum_{j=1}^n\mathbf{T}_{ij}x_j\right|\leq\sum_{j=1}^n\left|\mathbf{T}_{ij}\right|\left|x_j\right|.

Note that the equality happens when all xis have the same sign (\mathbf{T}_{ij} is positive). Assume that xk is the largest element of \vec\mathbf{X}. Hence,

\left|x_k\right|\leq\sum_{j=1}^n\left|\mathbf{T}_{kj}\right|\left|x_j\right|\leq\sum_{j=1}^n\left|\mathbf{T}_{kj}\right|\left|x_k\right|=\left|x_k\right|\sum_{j=1}^n\left|\mathbf{T}_{kj}\right|\leq\left|x_k\right|.

Hence, the equalities should happen. This means all \left|x_i\right| have to be equal to \left|x_k\right|. Given the previous condition that all xi have the same sign, this means \vec\mathbf{X}=\lambda\vec\mathbf{1}. Hence, according to (\ref{eq2}), we have,

\lambda\mathbf{T}\vec\mathbf{1}=\lambda\vec\mathbf{1}\rightarrow\mathbf{T}\vec\mathbf{1}=\vec\mathbf{1}.

As the elements of \mathbf{T}\vec\mathbf{1} give the sum of different rows of \mathbf{T}, so \mathbf{T} is stochastic. Something resulting in \vec\mathbf{Y}^0=\vec\mathbf{0} which makes the absorbing state unreachable from the other states, making the time till absorption infinite. From this argument we find a constraint for the matrix \mathbf{T}. Namely, at least one row of \mathbf{T} should sum to less than one. Here, we draw another, more important, conclusion that \mathbf{T} can not have any right eigenvalue with absolute value of more than one. This basically means that the matrix \mathbf{T}^k tends to zero as k goes to infinity.

The time till absorption of the Markov Chain represented by the matrix \mathbf{P} given in (\ref{eq4}) is denoted as PH(\vec\mathbf{\alpha},\mathbf{T}). Here, \vec\mathbf{\alpha} is the initialization probability and is a 1\times m vector of all non--negative entries summing up to one. The probability density function of this random variable equals,

f\left(k\right)=\vec\mathbf{\alpha}\mathbf{T}^{k-1}\vec\mathbf{T}^0, k>0.

Hence, we have,

F\left(k\right)=\sum_{i=1}^k f\left(i\right)= \sum_{i=1}^k\vec\mathbf{\alpha}\mathbf{T}^{i-1}\vec\mathbf{T}^0= \vec\mathbf{\alpha}\sum_{i=1}^k\mathbf{T}^{i-1}\vec\mathbf{T}^0= \vec\mathbf{\alpha}\left(\mathbf{I}-\mathbf{T}^k\right)\left(\mathbf{I}-\mathbf{T}\right)^{-1}\vec\mathbf{T}^0.

Using (\ref{eq5}) we have,

F\left(k\right)= \vec\mathbf{\alpha}\left(\mathbf{I}-\mathbf{T}^k\right)\vec\mathbf{1}= \vec\mathbf{\alpha}\vec\mathbf{1}-\vec\mathbf{\alpha}\mathbf{T}^k\vec\mathbf{1}= 1-\vec\mathbf{\alpha}\mathbf{T}^k\vec\mathbf{1}.

Also, trying to find the generating function, we have,

f(z)=\sum_{k=1}^\infty z^kf(k)= \sum_{k=1}^\infty z^k\vec\mathbf{\alpha}\mathbf{T}^{k-1}\vec\mathbf{T}^0= z\vec\mathbf{\alpha}\sum_{k=1}^\infty z^{k-1}\mathbf{T}^{k-1}\vec\mathbf{T}^0= z\vec\mathbf{\alpha}\left(\mathbf{I}-z\mathbf{T}\right)^{-1}\vec\mathbf{T}^0.

[edit] See also

[edit] References

  • Sheldon M Ross. Introduction to Probability Models, 8th edition. Chapter 6: Continuous Time Markov Chains, Academic Press; December, 2002
Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BernoullibinomialBoltzmanncompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomial
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-squareinverse gaussianinverse gammaKumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)ParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVoigtvon MisesWeibullWigner semicircleWilks' lambda DirichletKentmatrix normalmultivariate normalvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular